Сделай Сам Свою Работу на 5

Особенности дальнего транспорта природных газов





Основные месторождения газа в России расположены на значитель­ном расстоянии от крупных потребителей. Подача газа к ним осуществ­ляется по газопроводам различного диаметра. При прохождении газа возникает трение потока о стенку трубы, что вызывает потерю давления. Например, при расходе газа 90 млн.нм3/ сут по трубе 0 1400 мм давление убываетс7,6 до5,ЗМПа на участке L=l 10 км. Поэтому транспортиро­вать природный газ в достаточном количестве и на большие расстояния, только за счет естественного пластового давления нельзя. Для этой цели необходимо строить компрессорные станции (КС), которые устанавлива­ются на трассе газопровода через каждые 100-150 км.

Перед подачей газа в магистральные газопроводы его необходимо подготовить к транспорту на головных сооружениях, которые распола­гаются около газовых месторождений. Подготовка газа заключается в очистке его от механических примесей, осушки от газового конденсата и влаги, а также удаления при их наличии, побочных продуктов: серо­водорода, углекислоты и т.д.

При падении пластового давления, около газовых месторождений строят, так называемые, дожимные компрессорные станции, где давле­ние газа перед подачей его на КС магистрального газопровода подни­мают до уровня 5,5 — 7,5 МПа. На магистральном газопроводе около крупных потребителей газа сооружаются газораспределительные стан­ции для газоснабжения потребителей.



Все это свидетельствует о том, что транспорт газа на большие рас­стояния представляет собой весьма сложную техническую задачу, от решения которой во многом зависит развитие газовой промышленности и экономики страны в целом.

На газопроводах в качестве энергопривода КС используются газо­турбинные установки, электродвигатели и газомотокомпрессоры -


комбинированный агрегат, в котором привод поршневого компрессо­ра осуществляется от коленчатого вала двигателя внутреннего сгора­ния.

Вид привода компрессорных станций и ее мощность в основном оп­ределяются пропускной способностью газопровода. Для станций под­земного хранения газа, где требуются большие степени сжатия и малые расходы используются газомотокомпрессоры, а также газотурбинные агрегаты типа «Солар» и ГПА-Ц-6,3, которые могут обеспечивать за­данные степени сжатия. Для газопроводов с большой пропускной спо­собностью наиболее эффективное применение находят центробежные нагнетатели с приводом от газотурбинных установок или электродви­гателей.



Режим работы современного газопровода, несмотря на наличие стан­ций подземного хранения газа, являющихся накопителями природного газа, характеризуется неравномерностью подачи газа в течение года. В зимнее время газопроводы работают в режиме максимального обеспе­чения транспорта газа. В случае увеличения расходов, пополнение сис­темы обеспечивается за счет отбора газа из подземного хранилища. В летнее время, когда потребление газа снижается, загрузка газопрово­дов обеспечивается за счет закачки газа на станцию подземного хране­ния газа.

Оборудование и обвязка компрессорных станций приспособлены к переменному режиму работы газопровода. Количество газа, перекачи­ваемого через КС, можно регулировать включением и отключением чис­ла работающих газоперекачивающих агрегатов (ГПА), изменением ча­стоты вращения силовой турбины у ГПА с газотурбинным приводом и т.п. Однако во всех случаях стремятся к тому, чтобы необходимое коли­чество газа перекачать меньшим числом агрегатов, что приводит есте­ственно к меньшему расходу топливного газа на нужды перекачки и, как следствие, к увеличению подачи товарного газа по газопроводу.

Регулирование пропускной способности газопровода отключением работы отдельных КС при расчетной производительности газопровода обычно не практикуется из-за перерасхода энергозатрат на компреми-рование газа при такой схеме работы. И только в тех случаях, когда подача газа по газопроводу заметно снижается сравнительно с плано­вой (летом), отдельные КС могут быть временно остановлены.



Переменный режим работы компрессорной станции приводит к сни­жению загрузки газоперекачивающих агрегатов и, как следствие, к пе­рерасходу топливного газа из-за отклонения от оптимального КПД ГПА.

Характерный вид графиков переменного режима работы газопрово­да при изменении его производительности показан на рис. 2.1. Из рисун-


40

глава 2

41

Назначение- и устройство КС

 


 


i млн м3/сут

vvivnvniix х xi xii

месяцы

Рис. 2.1.Схема сезонного колебания расхода газа крупного промышленного

центра: А - ТЭЦ; Б - промышленность (включая котельные); В - отопление;

Г - --^ммунально-бытовые потребители


ка видно, что наибольшее влияние на режим работы КС и отдельных ГПА оказывают сезонные изменения производительности газопровода. Обычно максимум подачи газа приходится на декабрь- январь, а мини­мум - на летние месяцы года.

-6

Расход газа, млн.нм3/сут, через трубопровод длиной L км, определя­ется следующей формулой (при давлении 0,1013 МПа и 20°С):

(2.1)

Q =105,1-10,2-10

где D - внутренний диаметр газопровода, мм; Р„нРк - давление газа соответственно в начале и конце участка газопровода, МПа; X, = 0,009 - коэффициент гидравлического сопротивления; Дв - относи­тельная плотность газа по воздуху; Гр - средняя температура по длине газопровода, К; Z - средний по длине газопровода коэффициент сжи­маемости газа; L - длина участка газопровода, км.

На основании этой формулы можно вычислить пропускную способ­ность газопровода на участке между двумя КС.

Зависимость пропускной способности газопровода от давления показана на рис.2.2.

Затраты мощности КС можно определить по формуле

NKC =1,36-10-- KZ-R^-[(РН1Р^'К-l] ; (2.2)

где к - показатель адиабаты;г1н- адиабатический КПД нагнетателя; Гвх- температура газа на входе в нагнетатель, К. При z/?=46 кг-м/кг-К, к=1,31, Гх =293K,L=100KM,riH=0,82, Д = 0,6; 1,36-10"4-переводной коэффициент, с использованием соотношений (2.1) и (2.2) получаем за­висимость изменения мощности от производительности.

Расчеты показывают, что для прокачки Q = 90 млн.нм3/ сутки, на уча­стке трубопровода 0 1400мм, L= 100 км необходимо затратить мощность = 50 МВт. При увеличении производительности на 30 % от проектной, мощность необходимо увеличивать в два с лишним раза при сохране­нии конечного давления.

С ростом пропускной способности газопроводов за счет увеличения диаметра трубы и рабочего давления растет температура газа, протека­ющего по трубопроводу. Для повышения эффективности работы газо­провода и прежде всего для снижения мощности на транспортировку газа необходимо на выходе каждой КС устанавливать аппараты воз­душного охлаждения газа. Снижение температуры необходимо еще и для сохранения изоляции трубы.


43

Назначение ^устройство КС

глава 2

 


 



ев О. i- Л I 3 о. о. и с S га ев « 5 X ев Ч О ев CJ X U Си

Важным фактором по снижению энергозатрат на транспорт газа является своевременная и эффективная очистка внутренней полости трубопровода от разного вида загрязнений. Внутреннее состояние трубопровода довольно сильно влияет на изменение энергетических затрат, связанных с преодолением сил гидравлического сопротивле­ния во внутренней полости трубопровода. Создание высокоэффек­тивных очистных устройств с большим моторесурсом позволяет ста­бильно поддерживать производительность газопровода на проектном уровне, снижать энергозатраты на транспорт газа примерно на 10- 15%.

Для уменьшения затрат мощности КС на перекачку газа, увеличения пропускной способности газопровода и экономии энергоресурсов на перекачку газа, всегда выгодно поддерживать максимальное давление газа в трубопроводе, снижать температуру перекачиваемого газа за счет его охлаждения на станциях, использовать газопроводы большего диаметра, периодически осуществлять очистку внутренней полости тру­бопровода.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.