Формулы алгебры высказываний
Логика высказываний интересуется единственным свойством элементарных высказываний – их значением истинности; составные же высказывания изучаются ею со стороны их логической структуры, отражающей способ, которым они образованы. Структура составных высказываний определяет зависимость их значений истинности от значений истинности составляющих элементарных высказываний.
Так как смысл высказываний математическую логику не интересует, их вполне можно заменить переменными.
Пусть X, Y,…, Z,…, Xi, Yi,…, Zi – переменные, вместо которых можно подставить любые элементарные высказывания (или их значения истинности). Такие переменные называют пропозициональными или высказывательными переменными. С помощью высказывательных переменных и символов логических операций любое высказывание можно формализовать, т.е. заменить формулой, отражающей его логическую структуру.
Начнем с того, что уточним понятие формулы логики высказываний. Для этого зададим алфавит, т.е. набор символов, которые мы будем употреблять в логике высказываний:
1. Х, Y,…, Z,…, Xi, Yi,…, Zi (i – натуральное число) – символы для обозначения высказывательных переменных;
2. И, Л, 1, 0 – символы, обозначающие логические константы «истина» и «ложь»;
3. – символы логических операций;
4. (, ), [, ] – скобки (вспомогательные символы, служащие для указания порядка выполнения операций).
Дадим теперь строгое определение формулы логики высказываний (будем говорить формула ЛВ):
1. Всякая высказывательная переменная – формула ЛВ.
2. Символы И, Л, 1, 0 – формулы ЛВ.
3. Если F – формула ЛВ, то – формула ЛВ.
4. Если F1 и F2 – формулы ЛВ, то , , и – формулы ЛВ.
5. Никаких других формул в логике высказываний нет.
Определение такого вида называется индуктивным. В п.п. 1 и 2 определены элементарные формулы, в п.п. 3 и 4 даны правила образования новых формул из любых двух данных формул.
Условимся для упрощения записей не заключать в скобки формулы, не являющиеся частями других формул или стоящие под знаком отрицания. Заметим, что в формуле число левых скобок всегда должно быть равно числу правых скобок.
Опишем процедуру формализации высказываний:
1. Если высказывание – простое, то ему ставится в соответствие элементарная формула.
2. Если высказывание – составное, то для составления соответствующей формулы нужно: а) выделить все элементарные высказывания и логические связки, образующие данное составное высказывание; б) заменить их соответствующими символами; в) расставить скобки в соответствии со смыслом данного высказывания.
Пример 8:Определите логическую структуру высказываний (формализуйте высказывания):
1. Е = «Ваш приезд не является ни необходимым, ни желательным».
Составляющие простые высказывания: А = Ваш приезд необходим; В = Ваш приезд желателен. Они соединены между собой неявно имеющимся в высказывании Е союзом «и» и, кроме того, к каждому из них относится частица «не». Таким образом, форма сложного высказывания имеет вид:
2. Е = «Поиски врага длились уже три часа, но результатов не было, притаившийся враг ничем себя не выдал».
Переформулируем высказывание таким образом, чтобы выделить логические связки, неявно соединяющие простые высказывания: «Если притаившийся враг ничем себя не выдал, то его поиски длились уже три часа и результатов небыло». Теперь можно выделить простые высказывания: А = Враг себя выдал; В = Поиски врага длились уже три часа и С = Результат был. Теперь можно формализовать сложное высказывание: .
Замечание: Символ импликации ставится там, где подразумевается вторая часть союза «если…, то…», т.е. на месте «то». Таким образом, формула, полученная во втором примере, читается: «Если не А, то В и не С».
3. Е = «Если число делится на 2 и на 3, то оно делится на 6».
В этом высказывании можно выделить следующие элементарные высказывания: А = Число делится на 2, В = Число делится на 3 и С = Число делится на 6. Тогда формула, соответствующая сложному высказыванию, имеет вид: .
Последний пример наглядно показывает, почему математическую логику интересует только логическая структура высказываний. Точно такую же логическую структуру, как в третьем примере имеет большое количество, например, математических теорем: «Если в четырехугольнике противоположные стороны параллельны и равны, то этот четырехугольник - параллелограмм» или «Если две прямые параллельны третьей прямой, то они параллельны друг другу» («Если и , то »).
Пример 9: По форме высказываний и выраженным на естественном языке составляющим его простым высказываниям получить фразу на естественном языке.
1. .
Составляющие простые высказывания:
А = Человек с детства давал нервам властвовать над собой.
В = Человек в юности давал нервам властвовать над собой.
С = Нервы привыкнут раздражаться.
D = Нервы будут послушны.
Для начала прочитаем формулу с использованием логических связок, не обращая внимания на смысл составляющих простых высказываний: «Если не А и не В, то не С и D». Теперь подставим вместо букв соответствующие высказывания, не произнося повторяющиеся части или заменяя их синонимами (местоимениями). Получим следующую фразу на естественном языке:
Е = Если человек с детства и юности своей не давал нервам властвовать над собой, то они не привыкнут раздражаться и будут ему послушны. (К.Д. Ушинский)
2. .
Составляющие простые высказывания:
А = Некто является врачом.
В = Больной поговорил с врачом.
С = Больному стало легче.
Фраза на естественном языке:
Е = Если больному после разговора с врачом не становится легче, то это не врач. (В.М. Бехтерев)
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2025 stydopedia.ru Все материалы защищены законодательством РФ.
|