Сделай Сам Свою Работу на 5

Конденсатор на больших частотах

А теперь обсудим подробнее поведение конденсатора — гео­метрически идеального конденсатора,—когда частота становится все выше и выше. Мы проследим за изменением его свойств. (Мы предпочли рассматривать конденсатор, а не индуктивность, по­тому что геометрия пары обкладок много проще геометрии ка­тушки.) Итак, вот конденсатор (фиг. 23.4, а), состоит он из двух параллельных круговых обкладок, соединенных с внешним ге­нератором парой проводов. Если зарядить конденсатор посто­янным током, то на одной из обкладок появится положительный заряд, на другой — отрицательный, а между обкладками будет однородное электрическое поле.

 

 


 

Фиг. 23.4. Электрическое и магнитное поля между обкладками конденсатора.

Представим теперь, что вместо постоянного тока к обкладкам приложено переменное напряжение низкой частоты. (После мы увидим, какая частота «низкая», а какая «высокая».) Конденса­тор, скажем, соединен с низкочастотным генератором. Когда напряжение меняется, то с верхней обкладки положительный заряд убирается и прикладывается отрицательный. В момент, когда это происходит, электрическое поле исчезает, а потом восстанавливается, но уже в обратную сторону. Заряд медленно плещется туда-сюда, и поле поспевает за ним. В каждый момент электрическое поле однородно (фиг. 23.4, б); есть, правда, не­большие краевые эффекты, но мы намерены ими пренебречь. Ве­личину электрического поля можно записать в виде


 

(23.2)


где Е0— постоянно. Но останется ли это справедливым, когда частота возрастет? Нет, потому что при движении электрического поля вверх и вниз через произвольную петлю Г1 проходит поток электрического поля (фиг. 23.4, а). А, как вам известно, изменяющееся элект­рическое поле создает магнитное. Согласно одному из уравнений Максвелла, при наличии изменяющегося электрического поля (как в нашем случае) обязан существовать и криволинейный ин­теграл от магнитного поля. Интеграл от магнитного поля по замкнутому кругу, умноженный на с2, равен скорости измене­ния во времени электрического потока через поверхность внутри круга (если нет никаких токов):



 

(23.3)

Итак, сколько же здесь этого магнитного поля? Это узнать не­трудно. Возьмем в качестве петли Г1 круг радиуса r. Из симмет­рии ясно, что магнитное поле идет так, как показано на рисун­ке. Тогда интеграл от В равен 2prВ. А поскольку электрическое поле однородно, то поток его равен просто Е, умноженному на pr2, на площадь круга:

 


 

(23.4)


Производная Е по времени в нашем переменном поле равна iwE0eiwt, Значит, в нашем конденсаторе магнитное поле равно

 

(23.5)

Иными словами, магнитное поле тоже колеблется, а его величи­на пропорциональна w и r.

К какому эффекту это приведет? Когда существует магнит­ное поле, которое меняется, то возникнут наведенные электри­ческие поля, и действие конденсатора станет слегка похоже на индуктивность. По мере роста частоты магнитное поле усилива­ется: оно пропорционально скорости изменения Е, т. е. w. Им­педанс конденсатора больше не будет просто равен 1/iwС.

Будем увеличивать частоту и посмотрим повниматель­нее, что происходит. У нас есть магнитное поле, которое пле­щется то туда, то сюда. Но тогда и электрическое поле не может, как мы раньше предполагали, остаться однородным! Если имеет­ся изменяющееся магнитное поле, то по закону Фарадея должен существовать и контурный интеграл от электрического поля. Так что если существует заметное магнитное поле (а так и бы­вает на высоких частотах), то электрическое поле не может быть на всех расстояниях от центра одинаковым. Оно должно так меняться с r, чтобы криволинейный интеграл от него мог быть равен изменяющемуся потоку магнитного поля.

Посмотрим, сможем ли мы представить себе правильное электрическое поле. Это можно сделать, подсчитав «поправку» к тому, что было на низких частотах,— к однородному полю. Обозначим поле при низких частотах через Е1, и пусть оно по-прежнему равно Е0еiwt, а правильное поле запишем в виде

где E2поправка из-за изменения магнитного поля. При любых w мы будем задавать поле в центре конденсатора в виде E0eiwt (тем самым определяя Е0), так что в центре поправки не будет: E2=0 при r=0.


Чтобы найти Е2, можно использовать интегральную форму закона Фарадея

 

 

Интегралы берутся просто, если вычислять их вдоль линии Г2, показанной на фиг. 23.4,б и идущей сперва по оси, затем по радиусу вдоль верхней обкладки до расстояния r, потом вер­тикально вниз на нижнюю обкладку и обратно к оси по радиусу. Контурный интеграл от Е1 вдоль этой кривой, конечно, равен нулю; значит, в интеграл дает вклад только Е2, и интеграл равен просто —Ez(r)h, где h — зазор между обкладками. (Мы считаем Е положительным, когда оно направлено вверх.) Это равно скорости изменения потока В, который получится, если вычислить интеграл по заштрихованной площади S внутри Г2 (фиг. 23.4,6). Поток через вертикальную полосу шириной dr равен B(r)hdr, а суммарный поток


 

Полагая — d/dt от потока равным контурному интегралу от E2, получаем

 


 

 


 

Фиг. 23.5. Электрическое по­ле между обкладками конден­сатора на высоких частотах. Краевыми аффектами пренебрегли.

 

Заметьте, что h выпало: поля не зависят от величины зазора между обкладками.


Используя для В(r) формулу (23.5), получаем

 


Дифференцирование по времени даст нам просто еще один множитель iw:

 

 

(23.7)

Как и ожидалось, наведенное поле стремится свести на нет первоначальное электрическое поле. Исправленное поле Е = Е12 тогда равно

 


(23.8)

Электрическое поле в конденсаторе больше уже не однород­но; оно имеет параболическую форму (штриховая линия на фиг. 23.5). Вы видите, что наш простенький конденсатор уже слегка усложняется.


Наши результаты можно использовать для того, чтобы под­считать импеданс конденсатора на больших частотах. Зная электрическое поле, можно подсчитать заряд обкладок и узнать, как ток через конденсатор зависит от частоты оз. Но эта задача нас сейчас не интересует. Нас больше интересует другое: что станется, если частота будет продолжать повышаться, что про­изойдет на еще больших частотах? Но разве мы уже не кончили наш расчет? Нет, потому что раз мы исправили электрическое поле, то, значит, магнитное поле, которое мы раньше подсчи­тали, больше уже не годится. Приближенно магнитное поле (23.5) правильно, но только в первом приближении. Обозначим его В1, а (23.5) перепишем в виде

 

(23.9)


Вспомните, что это поле появилось от изменения Е1 . А правиль­ное магнитное поле будет создаваться изменением суммарного электрического поля Е12 . Если магнитное поле представить в виде В=В12 , то второе слагаемое — это просто добавочное поле, создаваемое полем Ег. Чтобы узнать В2 , надо повторить все те же рассуждения, которые приводились, когда подсчиты­вали В1: контурный интеграл от B2 вдоль кривой Г1 равен ско­рости изменения потока Е2 через Г1. Опять получится то же уравнение (23.4), но В в нем надо заменить на В2 , а Е — на E2:

 

 

Поскольку Е2 с радиусом меняется, то для получения его пото­ка надо интегрировать по круговой поверхности внутри Г1 . Беря в качестве элемента площади 2prdr, напишем этот интеграл в виде

 

 


 

 


Значит, В2(r) выразится так:

 

 

(23.10)


Подставляя сюда Е2(r) из (23.7), получаем интеграл от r3dr, который равен, очевидно, r4/4. Наша поправка к магнитному полю окажется равной

 

 

(23.11)


Но мы еще не кончили! Раз магнитное поле В вовсе не такое, как мы сперва думали, то мы, значит, неверно подсчитывали Е2. Надо найти еще поправку к Е, вызываемую добавочным магнит­ным полем В2. Эту добавочную поправку к электрическому по­лю назовем Е3. Она связана с магнитным полем В2 так же, как E2 была связана с В1. Можно опять прибегнуть к тому же самому соотношению (23.6), изменив в нем только индексы:

 

 

(23.12)


Подставляя сюда наш новый результат (23.11), получаем новую поправку к электрическому полю:

(23.13)

Если теперь наше дважды исправленное поле записать в виде Е=Е123 , то мы получим


(23.14)

Изменение электрического поля с радиусом происходит уже не по параболе, как было на фиг. 23.5; на больших радиусах значе­ние поля лежит чуть выше кривой (E1+E2).

Мы пока еще не дошли до конца. Новое электрическое поле вызовет новую поправку к магнитному полю, а заново под­правленное магнитное поле вызовет необходимость дальнейшей поправки к электрическому и т. д. и т. д. Но у нас уже есть все нужные формулы. Для В3 можно использовать (23.10), изменив индексы при В и Е с 2 до 3.


Очередная поправка к электрическому полю равна

 


С этой степенью точности все электрическое поле дается, стало быть, формулой

 

 

где численные коэффициенты написаны в таком виде, что стано­вится ясно, как продолжить ряд.


Окончательно получается, что электрическое поле между обкладками конденсатора на любой частоте дается произведением E0eiwt на бесконечный ряд, который содержит только перемен­ную wr/с. Можно, если мы захотим, определить специальную функцию, обозначив ее через J0(x), как бесконечный ряд в скоб­ках формулы (23.15):

 


Тогда искомое решение есть произведение E0eiwt на эту функцию при x=wr/c:

 

(23.17)

Мы обозначили нашу специальную функцию через J0 по­тому, что, естественно, не мы первые с вами занялись задачей колебаний в цилиндре. Функция эта появилась давным-давно, и ее уже привыкли обозначать J0. Она всегда возникает, когда вы решаете задачу о волнах, обладающих цилиндрической сим­метрией. Функция J0 по отношению к цилиндрическим волнам — это то же, что косинус по отношению к прямолинейным волнам. Итак, это очень важная функция. И изобретена она очень давно. Затем с нею связал свое имя математик Бессель. Индекс нуль означает, что Бессель изобрел целую кучу разных функций, а наша — самая первая из них.

Другие функции Бесселя — J1? J2 и т. д.— относятся к цилиндрическим волнам, сила которых меняется при обходе вокруг оси цилиндра.

Полностью скорректированное электрическое поле между обкладками нашего кругового конденсатора, даваемое формулой (23.17), изображено на фиг. 23.5 сплошной линией. Для не очень больших частот нашего второго приближения вполне хватает. Третье приближение было бы еще лучше — настолько хорошо, что если его начертить, то вы бы не заметили разницы между ним и сплошной линией. В следующем параграфе вы уви­дите, однако, что может понадобиться и весь ряд, чтобы получи­лось аккуратное описание поля на больших радиусах или на больших частотах.

Резонансная полость

Посмотрим теперь, что даст наше решение для электрическо­го поля между обкладками конденсатора, если продолжать увеличивать частоту все выше и выше. При больших w параметр х=wr/с тоже становится большим, и первые несколько слагае­мых ряда для J0 от х быстро возрастают. Это означает, что па­рабола, которую мы начертили на фиг. 23.5, на больших часто­тах изгибается книзу круче.

В самом деле, она выглядит так, как будто поле на высокой частоте все время старается обратиться в нуль где-то при с/w, примерно равном половине а. Давайте посмотрим, действитель­но ли функция J0 проходит через нуль и становится отрицатель­ной. Сперва испытаем х=2:



Это еще не нуль; но попробуем число побольше, скажем x=2,5. Подстановка дает

 

В точке x=2,5 функция J0 уже перешла через нуль. Результаты при х=2 и при х=2,5 выглядят так, как будто J0 прошла через нуль на одной пятой пути от 2,5 до 2. Поэтому надо проверить число 2,4:


 

 


Фиг. 23.6. Функция Бесселя J0(x).

 

С точностью до двух знаков после запятой получился нуль. Если рассчитывать точнее (или, поскольку функция J0 извест­на, если разыскать ответ в книжке), то обнаружится, что J0 " проходит через нуль при x=2,405. Мы провели расчет собствен­норучно, чтобы показать вам, что вы тоже способны открывать подобные вещи, а не заимствовать их из книг.

А если уж вы посмотрели про J0 в книжке, то интересно выяс­нить, как она идет при больших значениях х; она напоми­нает кривую на фиг. 23.6. Когда х возрастает, J0(x) колеблется от положительных значений к отрицательным и обратно, по­степенно уменьшая размах колебаний.

Мы получили интересный результат: если достаточно увели­чить частоту, то электрические поля в центре конденсатора и у его края могут быть направлены в противоположные стороны. Например, пусть w так велико, что x=wr/с на внешнем краю кон­денсатора равно 4; тогда на фиг. 23.6 краю конденсатора отве­чает абсцисса x=4. Это означает, что наш конденсатор работает при частоте w=4с/а. И на краю обкладок электрическое поле будет довольно велико, но направлено не туда, куда можно было ожидать, а в обратную сторону. Эта ужасная вещь может про­изойти с конденсатором на больших частотах. При переходе к очень большим частотам электрическое поле по мере удаления от центра конденсатора много раз меняет свое направление. Кроме того, имеется еще связанное с этими электрическими по­лями магнитное поле. Не удивительно, что наш конденсатор при высоких частотах уже не напоминает идеальной емко­сти. Можно даже задуматься над тем, на что похож он силь­нее: на емкость или на индуктивность. Надо к тому же под­черкнуть, что на краях конденсатора происходят и более сложные эффекты, которыми мы пренебрегли. Например, там проис­ходит еще излучение волн за края конденсатора, так что настоя­щие поля куда сложнее тех, которые мы рассчитали. Впрочем, мы не будем сейчас заниматься этими эффектами.

Можно было бы, конечно, попробовать представить себе для конденсатора эквивалентную цепь, но, вероятно, будет лучше, если мы просто примем, что тот конденсатор, который мы сконструировали для низко­частотных полей, больше не го­дится, когда частоты слишком велики.


 

Фиг. 23.7. Электрическое и магнит­ное поля в закрытой цилиндрической банке.

 

И если мы хотим изу­чить, как действует такой объект на высоких частотах, нам нужно оставить те приближения к уравнениям Максвелла, которые мы делали, изучая цепи, и вер­нуться к полной системе уравне­ний, полностью описывающей поля в пространстве. Вместо того чтобы манипулировать о идеализированными элементами цепи, надо оперировать с реаль­ными проводниками, с такими, какие они есть на самом деле, учитывая все поля в пространстве между ними. Например, если нам нужен резонансный контур на высокие частоты, то не нужно пытаться его сконструировать с помощью одной катушки и плоского конденсатора.

Мы уже упомянули, что плоский конденсатор, который мы рассматривали, похож, с одной стороны, на емкость, а с другой— на индуктивность. От электрического поля возникают заряды на поверхностях обкладок, а от магнитного — обратные э.д.с. Не может ли оказаться, что перед нами уже готовый резонанс­ный контур? Оказывается, да. Представьте, что мы выбрали такую частоту, при которой картина электрического поля падает до нуля на каком-то расстоянии от края диска; иначе говоря, мы выбрали wa/с большим, чем 2,405. Всюду на окружности, центр которой лежит на оси обкладок, электрическое поле об­ратится в нуль. Возьмем кусок жести и вырежем полоску такой ширины, чтобы она как раз поместилась между плоскими обкладками конденсатора. Затем изогнем ее в форме цилиндра та­кого радиуса, на котором электрическое поле равно нулю. Раз там нет электрического поля, то по вставленному в конден­сатор цилиндру никаких токов не потечет, и ни электрические, ни магнитные поля не изменятся. Мы, стало быть, смогли закоротить друг на друга обкладки конденсатора, ничего не из­менив в нем. И посмотрите, что получилось: вышла настоящая цилиндрическая банка с электрическим и магнитным полями внутри, причем никак не связанная с внешним миром. Поля внутри не изменятся, даже если отрезать выступающие края обкладок и провода, ведущие к конденсатору. Останется только закрытая банка с электрическим и магнитным полями внутри нее (фиг. 23.7,а). Электрические поля колеблются то вперед, то назад с частотой w, которая, не забывайте, определила собою диаметр банки. Амплитуда колеблющегося поля Е меняется с расстоянием от оси банки так, как показано на фиг. 23.7,6. Кривая эта — просто первая дуга функции Бесселя нулевого порядка. В банке есть еще и круговое магнитное поле, которое колеблется во времени со сдвигом по фазе на 90° относительно электрического поля.

Магнитное поле можно тоже разложить в ряд и изобразить на графике, как это сделано на фиг. 23.7,е.


Но как же это получается, что внутри банки могут существо­вать электрические и магнитные поля, не соединенные с внешним миром? Оттого, что электрическое и магнитное поля сами себя поддерживают: изменение Е создает В, а изменение В создает Е,— все в согласии с уравнениями Максвелла. Магнитное поле ответственно за индуктивность, электрическое — за емкость; вместе они создают нечто, похожее на резонансный контур. За­метьте, что описанные нами условия возникают лишь тогда, когда радиус банки в точности равен 2,405 с/w. В банке задан­ного радиуса колеблющиеся электрическое и магнитное поля бу­дут поддерживать друг друга (описанным способом) лишь при этой определенной частоте. Итак, цилиндрическая банка радиу­са r резонирует при частоте

 

 

(23.18)

Мы сказали, что если банка совершенно закрыта, то поля продолжают колебаться так же, как и раньше. Это не совсем так. Это было бы так, если бы стенки банки были идеальными проводниками. В реальной банке, однако, колеблющиеся токи, текущие по стенкам, могут из-за сопротивления материала те­рять энергию. Колебания полей постепенно замрут. Из фиг. 23.7 ясно, что там должны существовать сильные токи, связанные с электрическими и магнитными полями внутри полости. Из-за того, что вертикальное электрическое поле внезапно исчезает на верхнем и нижнем торцах банки, у него возникает там силь­ная дивергенция; значит, на внутренней поверхности банки должны появляться положительные и отрицательные заряды (фиг. 23.7, а). Когда электрическое поле меняет направление на обратное, должны менять знак и заряды, так что между верхним и нижним торцами банки должен течь переменный ток.

 


Фиг. 23.8. Подключение резонансной полости.

 

Он будет течь по боковой поверхности банки, как показано на рисунке. То, что по бокам банки должны течь токи, можно понять ещё, рассмотрев то, что происходит в магнитном поле. Кривая на фиг. 23.7, в сообщает нам, что магнитное поле на краю банки внезапно обращается в нуль. Такое внезапное изменение маг­нитного поля может произойти лишь оттого, что по стенке течет ток. Этот ток как раз и создает переменные электрические заря­ды на верхней и нижней обкладках банки.

Вас может удивить наше открытие — обнаружение токов на боковых сторонах банки. А как же с нашим прежним утвержде­нием, что ничего не изменится, если в области, где электриче­ское поле равно нулю, поставить эти боковые стенки? Вспомни­те, однако, что, когда мы впервые вставляли в конденсатор эти боковые стенки, верхняя и нижняя обкладки выступали за них, так что магнитные поля оказывались и снаружи нашей банки. И только когда мы отрезали выступающие за края банки части конденсатора, на внутренней части боковых стенок появи­лись какие-то токи.

Хоть электрические и магнитные поля в абсолютно закры­той банке из-за потерь энергии постепенно исчезнут, можно сделать так, чтобы этого не было. Для этого надо провертеть в банке сбоку дырочку и понемножку подбавлять энергию, чтобы возмещать потери. Надо взять проволочку, просунуть ее через дырочку в банке и припаять ее к внутренней части стенки, чтобы получилась петля (фиг. 23.8). Если подсоединить эту проволоч­ку к источнику высокочастотного переменного тока, то этот ток будет снабжать энергией электрическое и магнитное поля по­лости и поддерживать колебания. Это произойдет, конечно, лишь в том случае, если частота источника энергии совпадет с резонансной частотой банки.


 

Фиг. 23.9. Устройство для наблюдения резонанса в полости.

 

 


 

Фиг. 23.10. Кривая отклика, на частоту для резонансной полости.

 

Если частота у источника не та, то электрические и магнитные поля резонировать не будут и поля в банке окажутся слабенькими.

Резонансное поведение легко наблюдать, если в банке про­делать другую дырку и продеть в нее другую петлю (фиг. 23.8). Изменяющееся магнитное поле, проходящее через эту вто­рую петлю, будет генерировать в ней э. д. с. индукции. Если теперь эту петлю соединить с внешним измерительным контуром, то токи в нем будут пропорциональными напряженно­сти полей в полости. Представьте теперь, что входная петля на­шей полости соединена с радиочастотным сигнал-генератором (фиг. 23.9). Сигнал-генератор состоит из источника перемен­ного тока, частоту которого можно менять, поворачивая ручку на панели генератора. Соединим затем выходную петлю полости с «детектором» — прибором, измеряющим ток от выходной пет­ли. Отсчеты на его шкале пропорциональны этому току. Если затем измерить ток на выходе как функцию частоты сигнал-ге­нератора, то получится кривая, похожая на изображенную на фиг. 23.10. Ток на выходе невелик на всех частотах, кроме тех, которые близки к w0— резонансной частоте полости. Резонанс­ная кривая очень похожа на ту, о которой говорилось в гл. 23 (вып. 2). Однако ширина резонанса меньше, нежели обычно по­лучается в резонансных контурах, составленных из индуктивностей и емкостей; иначе говоря, Q (добротность) полости очень высока. Зачастую встречаются даже Q порядка 100 000 и выше, особенно если внутренние стенки полости сделаны из очень хорошо проводящего материала, например из серебра.



©2015- 2021 stydopedia.ru Все материалы защищены законодательством РФ.