Сделай Сам Свою Работу на 5

ВИХРЕВОЕ ДВИЖЕНИЕ ЖИДКОСТИ





Вихревое движение широко распространено как в природе, так и в разного рода технических устройствах. Поэтому изучение его закономерностей представляет несомненный практический интерес. Вращательное движение жидких частиц характеризуется вихрем скорости

(5.1)

Это означает, что в каждой точке пространства вращение жидких частиц может быть охарактеризовано этим вектором. Его модуль

(5.2)

Движение, при котором величина вихря скорости не равна нулю, т.е. , называют вихревым. При условии движение безвихревое либо потенциальное.

Кинематика вихревого движения.

Кинематические понятия для вихревого движения можно получить по аналогии с общими понятиями кинематики. В основу кинематики вихревого движения положено представление о вихревой линии, которое аналогично понятию линии тока. Вихревой называет­ся линия, в каждой точке которой в данный момент времени вектор вихря скорости совпадает с касательной (рис. 5.1). Другими словами, вихревая линия ­ это мгновенная ось вращения частиц жидкости, которые в данный момент времени расположены на ней. По аналогии с дифференциальным уравнением линии тока можно записать



(5.3)

Вихревая трубка ­ аналог трубки (поверхности) тока. Это поверхность, образованная вихревыми линиями, проведенными через все точки бесконечно малого замкнутого контура. Вихревая нить ­ аналог струйки ­ это жидкость, заключенная в вихревой трубке. Если вихревая трубка имеет конечные размеры, то частицы, заполняющие ее и находящиеся во вращательном движении, образуют вихревой шнур.

Интенсивность вихря.

Понятие интенсивности вихря достаточно абстрактно и вводится чисто математически. Напомним, что потоком векторного поля называют интеграл вида

(5.4)

Поскольку вихрь скорости (ротор) есть вектор, то вместо можно подставить , что и приводит нас к понятию интенсивности вихря, т.е. интенсивность вихря ­ это поток вектора вихря

Рис. 5.1

(5.5)

Можно использовать и другую форму записи: ;

(5.6)

Имея в виду, что , можем записать

(5.7)

Воспользуемся формулой Гаусса-Остроградского и перейдем от интеграла по поверхности к интегралу по объему. Имеем:

.

Раскроем выражение, стоящее под знаком интеграла, имея в виду, что проекции вектора вихря имеют вид:



;

;

.

Имеем

.

Следовательно, можно записать

(5.8)

Заметим, что это выражение по структуре напоминает уравнение неразрывности.

Применим (5.8) к вихревому шнуру (рис. 5.2). На боковой поверхности , так как направлен по касательной к поверхности. Поэтому можем записать

;

.

Если допустить, что в пределах сечения , то

(5.9)

Либо в общем случае

(5.10)

Рис. 5.2

т.е. это своеобразное «уравнение неразрывности». Полученный результат носит название теоремы Гельмгольца о вихрях, которую можно сформулировать следующим образом: интенсивность вихревого шнура на всей его протяженности остается постоянной. Из выражения (5.10) следует и другой весьма важный вывод, сделанный Г.Гельмгольцем в 1855 г. в работе «Об интегралах уравнений, соответствующих вихревым движениям».Так как произведение остается неизменным, то уменьшение площади сечения шнура должно приводить к увеличению угловой скорости вращения частиц. При , что физически невозможно. Следовательно, вихрь не может зарождаться либо оканчиваться в толще жидкости. Окончательно развившись, он должен замкнуться либо на твердую поверхность, либо сам на себя, т.е. образовать вихревое кольцо. Подробное описание этого явления можно найти в книге: Фабрикант Н.Я. Аэродинамика. - М.: Наука, 1964. - 814 с.

Понятие об интенсивности является весьма важным, но, к сожалению, непосредственное определение этой величины экспериментальным путем связано с непреодолимыми трудностями. Кроме того, если пытаться распространить это понятие на вихри конечных размеров, то по аналогии со средней скоростью пришлось бы вводить понятие о средней угловой скорости, что связано с определенными трудностями чисто математического характера. Поэтому гидромеханика избрала другой путь, заменив это понятие другим, более удобным для целей практики. К рассмотрению этого понятия, называемого циркуляцией скорости, мы и приступим.



Циркуляция скорости.

Для введения понятия о циркуляции скорости в настоящем пособии используется методика Н.Я.Фабриканта, приведенная в упомянутой выше книге. Несомненным преимуществом ее является то, что в отличие от других она позволяет ввести понятие циркуляции не чисто математически, а исходя из достаточно простых и ясных физических предпосылок.

  Рис. 5.3

Рассмотрим крыловой профиль, находящийся в потоке газа (воздуха). Как известно, на профиль в этом случае будет действовать подъемная сила (см. рис. 5.3). Физически наличие этой силы можно объяснить лишь тем, что давление под профилем ( ) больше, а давление над профилем ( ) меньше, чем давление на каком-то удалении от него, которое мы обозначим . Это позволяет утверждать, что под крыловым профилем скорость , а над ним . В данном случае - скорость невозмущенного потока.

Вычтем теперь из скоростей и скорость , т.е. и . Это действие приводит нас к понятию потока возмущения, т.е. движения, которое возникает в среде из-за того, что в нее внесено инородное тело, т.е., по существу, это реакция потока, обусловленная в рассматриваемом случае тем, что в ней появился крыловой профиль. Установим теперь направление потоков возмущения. Под профилем , и он направлен против скорости , над профилем - наоборот. В результате появляется циркуляционный поток, направленный по часовой стрелке, как это показано на рис. 5.3. Теперь необходимо охарактеризовать этот поток количественно. Именно с этой целью вводится понятие циркуляции скорости по замкнутому контуру.

Рассмотрим замкнутый контур C, показанный на рис. 5.4. Пусть в произвольной точке M скорость равна . Составим скалярное произведение , где - направленный элемент дуги.

Циркуляцией скорости называют контурный интеграл вида

(5.11)

  Рис. 5.4

Обратим внимание на структуру этого соотношения. Оно построено аналогично выражению для работы, поэтому иногда говорят, что циркуляция - это своеобраз­ная «работа» вектора скорости. Имея в виду, что и , по правилу скалярного произведения получим

(5.12)

Для плоского течения:

(5.13)

В конце предыдущего раздела утверждалось, что понятие циркуляции является более удобным, чем интенсивность вихря. Действительно, из (5.13) следует, что для определения циркуляции достаточно знать проекции скорости, нахождение которых не связано с существенными трудностями. Однако остается пока открытым вопрос о том, существует ли связь между циркуляцией и интенсивностью вихря. Ответ на него дает теорема Стокса.

Теорема Стокса.

В движущейся жидкости рассматриваем вихревое поле и выделяем в нем малый замкнутый контур со сторонами dx и dy (рис. 5.5). Пусть в начале координат скорости будут и . Запишем выражение для элементарной циркуляции по этому контуру, имея в виду, что поток двумерный: .

Рис. 5.5

Рассмотрим контур OABC. Если вдоль OA скорость , то вдоль CB ее приращение составит , и аналогично вдоль AB - . Это следует из выражения для полного дифференциала скорости, например, .

Запишем теперь выражение для элементарной циркуляции вдоль контура OABCO. Имеем:

Раскрывая скобки и выполнив сокращения, получаем

Из чего следует, что циркуляция по бесконечно малому замкнутому контуру равна интенсивности вихря, пронизывающего этот контур.

Этот вывод легко обобщить и на случай произвольной кривой конечных размеров (см., например, Аржаников Н.С. и Мальцев В.Н. Аэродинамика. - М.: Оборонгиз, 1956 - 483 с.; упомянутую выше книгу Н.Я.Фабриканта).

Таким образом, можем записать:

(5.14)

Это и есть формула Стокса, показывающая, что циркуляция по произвольному контуру равна сумме интенсивностей (напряжений) вихрей, пронизывающих поверхность, натянутую на контур.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.