Сделай Сам Свою Работу на 5

Тимус, топография и особенности строения.





Развивается железа из выростов III и IV глоточных карманов в конце 1-го месяца внутриутробного развития. Затем тимус обособляется от глотки, правая и левая его закладки сближаются и срастаются. Первоначально тимус образован эпителиальной тканью энтодермального происхождения. Позднее он начинает заселяться мезенхимными и лимфоидными клетками, которые быстро размножаются. На 3-м месяце происходит дифференцировка тимуса на мозговую и корковую части, развивается структура тимуса, характерная для лимфоидных органов. Эпителиальные клетки раздвигаются, но остаются соединенными друг с другом отростками, т.е. формируют сетчатую структуру. В мозговом веществе появляются слоистые эпителиальные тельца. Образующиеся в тимусе T-лимфоциты заселяют периферические лимфоидные органы. У новорожденных тимус имеет наибольший относительный вес и размеры. Максимального абсолютного веса (25–30 г) железа достигает к 13–14 годам, после чего развитие ее приостанавливается. С возрастом она сильно уменьшается, заменяясь рыхлой соединительной и жировой тканью. Наибольшим изменениям подвергается корковое вещество.



 

Глава 3

НЕРВНАЯ СИСТЕМА

 

 

3.1. ОБЩИЕ СВЕДЕНИЯ О НЕРВНОЙ СИСТЕМЕ

3.1.1. Нервная ткань

 

Основные свойства живой материи – раздражимость и возбудимость, т.е. способность отвечать на действие раздражителей (факторов внешней или внутренней среды или их изменений) определенной деятельностью (движением, секрецией). В нервной ткани в течение эволюции возбудимость приняла форму специфической реакции – нервного импульса, выработалась способность к его быстрому проведению. В результате функцией нервной ткани стало осуществление взаимосвязи тканей и органов и связи всего организма с окружающей средой.

 

Нервная ткань состоит из нейронов, или нервных клеток, и нейроглии (см. Атл.). Нервные клетки и большая часть глии (макроглия) – производные эктодермального зародышевого листка; меньшая часть глии (микроглия) происходит из мезенхимы.

 

Нейроглия имеет вспомогательное значение. Клетки макроглии выполняют опорно-трофическую функцию: служат опорой для нервных клеток; входят в состав оболочек нейронов, обеспечивая их изоляцию; участвуют в нервной трофике (обмене веществ); в синаптической передаче и т.д. Клетки микроглии подвижны; их основная функция – фагоцитоз.



 

Нервная клетка, или нейрон, – основная структурная и функциональная единица нервной системы. Нейрон имеет тело и отростки: один или несколько дендритов и один аксон, или нейрит, и концевые образования отростков (рис. 3.1). По дендритам проходят нервные импульсы к телу клетки (центростремительные), по нейриту – от ее тела (центробежные). Отростки нервных клеток, обеспечивая проведение нервного импульса, достигают в некоторых случаях очень большой длины – до 1 – 1,5 м.

 

Все нейриты, а также дендриты чувствительных нейронов на известном расстоянии от тела клетки покрываются оболочками и называются

Рис. 3.1. Нейрон

 

 

нервными волокнами. Различают мякотные и безмякотные нервные волокна. Безмякотные волокна значительно тоньше. Осевой цилиндр (аксон) покрыт одним слоем глиальных (шванновских) клеток (линолиновая оболочка отсутствует). Эти волокна относятся в основном к вегетативной нервной системе.

 

В мякотных, или миелиновых, волокнах осевой цилиндр под цитоплазмой шванновских клеток покрыт еще и миелиновой оболочкой, которая играет роль электрического изолятора, обусловливая быстрое проведение нервного импульса; она несет также трофическую функцию. В различных мякотных волокнах миелиновая оболочка имеет разную толщину, от этого зависит скорость проведения импульса по волокну. В онтогенезе начало функционирования разных отделов нервной системы определяется в значительной мере сроками миелинизации их волокон. Она происходит раньше в филогенетически более древних структурах.



 

Концевые образования отростков нейрона, или нервные окончания, по функциональному значению подразделяются на рецепторные, эффекторные и межнейрональные. Рецепторными окончаниями называют концевые образования дендритов в органах, воспринимающие различного рода раздражения и трансформирующие их в нервный импульс.

 

Эффекторные окончания – это концевые образования нейритов в рабочих органах: мышцах, железах. В поперечно-полосатых мышцах они имеют вид сложно устроенных моторных бляшек (см. рис. 1.51), в гладких мышцах и железах представлены свободными разветвлениями. Межнейрональными называют окончания нейритов на поверхности тела нервной

Рис. 3.2. Синаптические контакты на теле нейрона

 

клетки или отростков другого нейрона. Концевые разветвления нейрита снабжены утолщениями в виде бляшек и колечек (рис. 3.2).

 

Эффекторные и межнейрональные окончания обеспечивают переход возбуждения с нервного волокна на мышечную, железистую или нервную клетку. Структурные образования, обеспечивающие этот переход, называют синапсами. Синапс состоит из двух частей – пресинаптической, с расположенными в ней синаптическими пузырьками, содержащими медиатор, и постсинаптической, образованной поверхностью сомы или отростка другого нейрона или поверхностной мембраной иннервируемого мышечного волокна или железы. Между пресинаптической и постсинаптической мембранами находится синаптическая щель. Синапсы между нервными

 

 

клетками подразделяются на аксо-соматические, если они расположены на теле клетки (соме), аксо-дендритические – на разветвлениях дендрита и аксо-аксональные – на аксоне.

 

Рецепторные окончания дендритов, или чувствительных нервных волокон, могут быть представлены свободными нервными окончаниями. Они встречаются, например, в стенках внутренностей и сосудов, в гладких мышцах и эпителии кожи. В других органах окончания этих волокон связаны с видоизмененными эпителиальными клетками (волосковыми в улитке внутреннего уха, вкусовыми в сосочках языка и т.д.) или соединительно-тканными (нервно-мышечные веретена скелетных мышц, осязательные тельца сосочков кожи и т.д.). Они образуют специализированные рецепторы органов чувств и тканей. В обонятельном органе и глазу последние представлены видоизмененными клетками нервной ткани. Экстерорецепторами называют рецепторы, воспринимающие раздражения из внешней среды. Они находятся в коже (тактильные и болевые), в органах обоняния, вкуса, слуха и зрения. Интерорецепторы воспринимают механические, химические, температурные и другие раздражения, возникающие внутри организма. Они расположены во внутренностях, сосудах, аппарате равновесия (или вестибулярном), суставах, мышцах и сухожилиях. Интерорецепторы внутренних органов относятся к висцерорецепторам, а органов равновесия и опорно-двигательного аппарата – к проприорецепторам. Последние сигнализируют о положении нашего тела в пространстве, о его позе и ее изменениях.

 

Таким образом, свободные окончания чувствительных волокон или специализированные рецепторы органов чувств постоянно испытывают разнообразные воздействия со стороны не только внешней, но и внутренней среды организма. Это позволяет нервной системе согласовывать деятельность всех органов и определять взаимоотношения организма со средой.

3.1.2. Элементы рефлекторной дуги

 

Под влиянием раздражения в рецепторе возникает возбуждение, которое проводится миелинизированным дендритом в тело нервной клетки. От тела этого рецепторного, чувствительного нейрона нервные импульсы переходят по его нейриту на другой нейрон. Передача импульса осуществляется через синаптические окончания на отростках или теле эффекторного нейрона. Последний может быть двигательным (моторным) или секреторным в зависимости от того, к какой реагирующей ткани подходит его нейрит – к мышечной или железистой. По эффекторному нейрону возбуждение достигает органа, вызывая специфическую реакцию, двигательную или секреторную.

 

Все ответные реакции организма, наступающие в ответ на раздражение рецепторов и происходящие при участии нервной системы, называют рефлексами. Совокупность нейронов, по которым осуществляется рефлекс, формирует рефлекторную дугу. Рефлекторные дуги бывают двух типов – цереброспинального, или соматического, и автономного, или вегетативного. По рефлекторным дугам первого типа главным образом осуществляется управление работой скелетной мускулатуры. По дугам второго типа регулируется в основном непроизвольное сокращение гладкой мускулатуры внутренних органов и сосудов, секреция желез.

 

Описанная связь рецепторного и эффекторного нейронов – пример

 

 

двухнейронной рефлекторной дуги (см. Атл.). В теле человека по такой дуге могут осуществляться сухожильно-мышечные рефлексы (например, коленный). Подобные рефлекторные дуги встречаются довольно редко. В большинстве случаев реакции протекают по более сложной схеме, включающей целый ряд вставочных нейронов между рецепторным и эффекторным нейронами. С их помощью информация от рецепторов с периферии передается в вышележащие отделы ЦНС, где происходит ее обработка и формируется ответная реакция. Цепь вставочных нейронов рефлекторной дуги может распространять импульс центростремительно до коры больших полушарий, а затем центро-бежно до эффекторного нейрона. Существующие на нейритах боковые ответвления – коллатерали, которые оканчиваются на соседних с данной цепью вставочных нейронах, передают импульс в стороны от его прямого пути. Это приводит к вовлечению в процесс возбуждения большого количества нейронов, расположенных на разных уровнях центральной нервной системы. Однако роль отдельных нейронов этого сложного "ансамбля", согласованно регулирующего функцию, неодинакова.

 

Таким образом, нейроны, связанные между собой синаптическими контактами, участвуют в переработке информации. Благодаря этому в мозгу формируются сети нейронов, по которым передается информация, происходит ее объединение и обработка. Наличие на теле и отростках одного нейрона огромного количества синапсов свидетельствует о том, что на одном нейроне сходится информация от различных отделов мозга, или, наоборот, этот нейрон посылает сигналы к нейронам разных областей ЦНС. Так образуется локальная сеть нейронов, или микросеть. На следующем уровне организации в сети объединяются удаленные друг от друга нейроны. Они могут располагаться как в одной области мозга, так и включать нейроны нескольких областей. Каждая такая система нейронов оказывается связанной со многими соседними системами. При последовательном соединении нескольких областей формируются проводящие пути. Если они передают информацию с периферии в центр, говорят о восходящих путях (сенсорные системы), если, наоборот, от центра на периферию – о нисходящих путях (моторные системы). Как было установлено, осуществляющиеся по цепи нейронов (рефлекторной дуге) ответные реакции находятся под контролем рецепторов рабочего органа. Например, степень растяжения мышцы контролируют рецепторы растяжения – мышечные веретена. Таким образом устанавливается обратная связь рабочего органа с нервными центрами.

 

Выдающийся русский ученый И.М. Сеченов ввел в физиологию понятие об анализаторах. В дальнейшем оно было развито и экспериментально обосновано И.П. Павловым. Анализатор, по И.П. Павлову, состоит из периферического отдела, воспринимающего изменения среды; проводникового отдела, представленного чувствительным нейроном и всей восходящей цепью вставочных нейронов, и центрального отдела, находящегося в коре больших полушарий. Анализатор охватывает, следовательно, лишь часть рефлекторной дуги.

 

По этому учению, рецепторы органов чувств и тканей – периферический отдел различных анализаторных систем. Возбуждение, в которое трансформируется воспринятое рецепторами раздражение, поступает в мозг, где подвергается анализу и синтезу, особенно тонкому и сложному в коре больших полушарий. Последняя

 

 

наиболее высокоорганизована у человека, вследствие чего именно у него достигается самое совершенное уравновешивание организма с внешней средой.

 

В настоящее время анализаторы принято называть сенсорными системами. 3.1.3. Отделы нервной системы

 

Нервная система человека подразделяется на соматическую и вегетативную (автономную). В свою очередь соматическая нервная система представлена центральным и периферическим отделами. Она иннервирует стенки тела и конечности (сому).

 

Центральный отдел соматической нервной системы представлен спинным и головным мозгом и состоит из серого и белого вещества. Серое вещество образуется телами и отростками нейронов, а белое – волокнами (т.е. отростками нейронов, покрытыми миелиновой оболочкой беловатого цвета), объединенными в проводящие пути.

 

Периферический отдел включает нервы, нервные узлы (ганглии), сплетения и нервные окончания. Периферические нервы образованы миелинизированными (чувствительными и двигательными) и безмиелиновыми нервными волокнами. Снаружи нерв покрыт довольно толстой соединительнотканной оболочкой – эпиневрием. Каждый пучок нервных волокон окружен более тонкой прослойкой соединительной ткани – периневрием. В этих оболочках проходят кровеносные и лимфатические сосуды питающие нерв. В крупных нервах каждое волокно заключено в свою тонкую оболочку – эндоневрий (см. Атл.). В мелких нервах последний отсутствует. Все эти оболочки продолжаются в ганглии.

 

Нервные узлы, или ганглии, – это скопления чувствительных (афферентных) нейронов вне спинного и головного мозга, расположенных по ходу периферических нервов. На уровне спинного мозга ганглии носят название спинно-мозговых или спинальных, а на уровне головного – черепно-мозговых или краниальных. Псевдоуниполярные или биполярные нейроны в ганглии окружены слоем уплощенных глиальных (мантийных) клеток (см. Атл.). Один из отростков нейрона направляется на периферию и является чувствительным (дендритом) – по нему информация поступает к телу клетки. Другой отросток, называемый аксоном, связывает тело нейрона с соответствующим отделом ЦНС. Обычно оба отростка миелинизированы. В ганглии продолжаются соединительнотканные оболочки, покрывающие нервы.

 

Часть нервной системы, иннервирующая гладкие мышцы и железы, проводящая от мозга импульсы, которые регулируют деятельность внутренних органов и обмен веществ, называется автономной, или вегетативной. Эта система также имеет периферический и центральный отделы (см. раздел 3.5).

Оболочки мозга

 

Спинной и головной мозг покрыты тремя оболочками: мягкой, или сосудистой, паутинной и твердой (рис. 3.3).

 

Мягкая мозговая оболочка (рiа mater), очень тонкая, образована рыхлой соединительной тканью, содержащей сеть эластических и пучки коллагеновых волокон. Эта оболочка пронизана многочисленными кровеносными сосудами и сопровождает их в мозговой ткани. Впячиваясь в процессе развития в полости головного мозга (желудочки), мягкая

Рис. 3.3. Оболочки спинного мозга:

 

1 – твердая, 2 – мягкая и 3 – паутинная мозговые оболочки; 4 – задний корешок; 5 – спинно-мозговой нерв; 6 – спинальный ганглий

 

оболочка образует в них сосудистые сплетения. Снаружи оболочка покрыта плоским эпителием, сходным с мезотелием. С поверхностью мозга оболочка спаяна с помощью глиальной мембраны. Иннервируется оболочка нервами, отходящими от вегетативных сплетений, сопровождающих внутреннюю сонную и позвоночную артерии.

 

Паутинная мозговая оболочка (arachnoidea) тонкая, не имеющая сосудов. В области спинного мозга она связана с мягкой мозговой оболочкой с помощью тонких соединительнотканных перекладин (трабекул). Как внутренняя, так и наружная поверхности оболочки покрыты непрерывным слоем уплощенных клеток. Между мягкой и паутинной оболочками расположено субарахноидальное (подпаутинное) пространство, заполненное цереброспинальной жидкостью. В области спинного мозга это пространство достигает 1–2 мм ширины, в головном мозге его размеры непостоянны. На поверхности извилин оно практически отсутствует, здесь паутинная оболочка срастается с мягкой, но не следует за ней в борозды, а перекидывается через них. Таким образом, над бороздами возникает довольно значительное пространство. В некоторых участках мозга такие пространства настолько велики, что получили название цистерн (см. Атл.). Наиболее крупные из них расположены между мозжечком и продолговатым мозгом (мозжечково-мозговая), в латеральной борозде больших полушарий, между ножками мозга, между перекрестом зрительных нервов и лобными долями полушарий. Все субарахноидальные пространства сообщаются друг с другом, а через три отверстия в крыше IV желудочка с его полостью и полостями других желудочков. Наружная поверхность паутинной оболочки обращена к твердой оболочке. В некоторых местах образуются выросты (грануляции) паутинной оболочки в сторону твердой (см. ниже).

 

В каудальном отделе спинного мозга паутинная оболочка вместе с мягкой продолжается в концевую нить.

 

Обе оболочки вместе с лежащим между ними субарахноидальным пространством представляют собой защитно-трофическую систему вокруг мозга. Проникшие в цереброспинальную жидкость посторонние вещества и токсические продукты тканевого распада подвергаются переработке эндотелием стенок и макрофагами.

 

Твердая мозговая оболочка (dura mater) самая наружная, состоит из плотной соединительной ткани с большим количеством коллагеновых волокон. В позвоночном канале она образует вокруг спинного мозга плотный фиброзный мешок, который сверху прочно сращен с краями большого затылочного отверстия. Внизу эта оболочка окружает конский хвост

 

 

и вместе с концевой нитью прирастает к надкостнице копчика. Пространство между паутинной и твердой оболочками называется субдуральным. Оно заполнено жидкостью, которая не является цереброспинальной. Между твердой оболочкой и надкостницей позвоночного канала располагается эпидуральное пространство, в котором находится жировая ткань и венозное сплетение. Тонкие перекладины соединительной ткани (до 23 пар) в виде зубчатой связки натянуты по бокам между мягкой в твердой оболочками, они фиксируют спинной мозг. В межпозвоночных и черепных отверстиях отростки твердой оболочки облегают корешки спинно-мозговых и черепных нервов, срастаются с краями отверстий и продолжаются в оболочки нервов.

 

В черепе нет субдурального пространства. Твердая мозговая оболочка прочно срастается с внутренней надкостницей костей основания черепа. В области крыши черепа твердая оболочка образует отростки, заходящие между отделами мозга и предотвращающие давление их друг на друга (см. Атл.). Самый крупный из них – серп большого мозга, проникает в сагиттальной плоскости между большими полушариями. Он начинается спереди от петушиного гребня решетчатой кости, а сзади доходит до верхней поверхности намета мозжечка. Между полушариями мозжечка залегает серп мозжечка. Затылочные доли больших полушарий отделяются от мозжечка наметом мозжечка, который натянут между верхними краями пирамид височных костей над задней черепной ямкой. В передней части намета мозжечка располагается вырезка, в которой проходит стволовая часть мозга. К краям турецкого седла прирастает диафрагма седла, которая ограничивает полость, где лежит гипофиз.

 

В местах отхождения отростков твердая оболочка расщепляется и формирует выстланные эндотелием каналы – пазухи или синусы, которые оставляют на внутренней поверхности черепа след в виде широких борозд (см. Атл.). В пазухи впадают вены головного мозга. Неспадающиеся стенки сохраняют постоянными просветы пазух, что способствует свободному отведению крови и предотвращает ее застой в черепе и мозге. В венозные пазухи твердой оболочки выпячиваются грануляции паутинной оболочки (см. Атл.). Последние обеспечивают отток цереброспинальной жидкости из подпаутинных пространств в венозные пазухи, чем поддерживается постоянство внутричерепного давления. Грануляции появляются на третьем году жизни и с возрастом увеличиваются.

 

По верхнему краю серпа большого мозга расположен верхний сагиттальный синус. По его бокам между листками твердой мозговой оболочки залегают многочисленные боковые лакуны, в которые впячиваются грануляции паутинной мозговой оболочки. Задний конец синуса вливается в самый крупный из всех – поперечный синус, лежащий в основании мозжечкового намета в одноименной борозде затылочной кости. Поперечный синус продолжается в сигмовидный, который спускается к яремному отверстию и продолжается в верхнюю луковицу внутренней яремной вены (см. Атл.). Нижний сагиттальный синус проходит по нижнему краю серпа большого мозга и вливается в прямой синус.

 

3.1.5. Образование

и циркуляция цереброспинальной

жидкости

 

В субарахноидальном (подпаутинном) пространстве находится цереброспинальная жидкость, которая по составу представляет собой

 

 

видоизмененную тканевую жидкость Эта жидкость является амортизатором для тканей мозга Она распределяется также по всей длине спинно-мозгового канала и в желудочках мозга Цереброспинальная жидкость выделяется в желудочки мозга из сосудистых сплетений, образованных многочисленными капиллярами, отходящими от артериол и свисающими в виде кисточек в полость желудочка (рис 3.4.). Поверхность сплетения покрыта однослойным кубическим эпителием, развивающимся из эпендимы нервной трубки. Под эпителием лежит тонкий слой соединительной ткани, который возникает из мягкой и паутинной оболочек мозга

 

Цереброспинальная жидкость оттекает от боковых желудочков через третий желудочек и водопровод к четвертому желудочку Здесь происходит

Рис 3.4. Схема образования цереброспинальной жидкости:

 

1 – верхний сагиттальный синус, 2 – грануляция паутинной оболочки, 3 – твердая оболочка, 4 – передний мозг, 5 – сосудистое сплетение, 6 – подпаутинное пространство, 7 – боковой желудочек, 8 – промежуточный мозг, 9 – средний мозг, 10 – мозжечок, 11 – продолговатый мозг, 12 – латеральное отверстие IV желудочка, 13 – надкостница позвонка, 14 – позвонок, 15 – межпозвоночное отверстие, 16 – эпидуральное пространство, 17 – нисходящий ток спинно-мозговой жидкости, 18 – спинной мозг, 19 – мягкая мозговая оболочка, 20 – твердая мозговая оболочка, 21 – обмен жидкости между тканью спинного мозга и подпаутинным пространством, 22 – концевая нить, 23 – копчик, 24 – паутинная оболочка, 25 – спинно-мозговой ганлий, 26 – твердая мозговая оболочка, переходящая в периневрий, 27 – спинно-мозговой нерв, 28 – вена позвоночного сплетения, 29 – спинно-мозговая жидкость, проникающая в венулы мягкой мозговой оболочки, 30 – сосудистое сплетение IV желудочка, 31 – паутинная оболочка, 32 – мягкая оболочка, 33 – поперечный синус с грануляцией паутинной оболочки, 34 – сосуды мягкой мозговой оболочки, 35 – вены головного мозга

 

 

ее выделение через отверстия в крыше желудочка в субарахноидальное пространство. Если по какой-то причине отток жидкости нарушается, возникает ее избыток в желудочках, они расширяются, сдавливая мозговую ткань. Это состояние называют внутренней гидроцефалией.

 

Цереброспинальную жидкость образуют также кровеносные сосуды, проникающие в мозг. Количество этой жидкости незначительно, она выделяется на поверхность мозга по мягкой оболочке, сопровождающей сосуды. С поверхности мозга цереброспинальная жидкость всасывается обратно в кровоток через грануляции паутинной оболочки – арахноидальные ворсинки, выступающие в синусы твердой оболочки. Через тонкий покров ворсинки цереброспинальная жидкость попадает в венозную кровь синуса. Лимфатические сосуды в головном и спинном мозге отсутствуют.

3.2. СПИННОЙ МОЗГ

3.2.1. Внешний вид спинного

мозга

 

Спинной мозг (рис. 3.5) представляет собой трубку длиной около 45 см у мужчин и 42 см – у женщин. Полость спинного мозга – центральный канал – почти редуцирована. Он одет тремя оболочками – твердой, паутинной и мягкой.

 

Спинной мозг начинается от головного под большим затылочным отверстием и кончается на уровне I–II поясничных позвонков заострением – мозговым конусом. От последнего тянется вниз концевая нить. Она состоит из паутинной и мягкой мозговых оболочек, которые, заканчиваясь в надкостнице копчика, способствуют фиксации спинного мозга. Концевая нить окружена длинными корешками нижних сегментов мозга, образующими конский хвост.

 

Спинной мозг состоит из 31 сегмента (невротома): 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчикового.

 

В спинном мозге имеются два утолщения: шейное, особенно выраженное на уровне V–VI шейных невротомов, и поясничное с наибольшей шириной в области III–IV поясничных сегментов. Образование

Рис. 3.5. Спинной мозг (твердая мозговая оболочка вскрыта):

 

А – спереди; Б – сзади; С (I–VIII) – шейные; Th (I-XII) – грудные; L (I–V) – поясничные; S (I–V) – крестцовые спинно-мозговые нервы; 1 – шейное утолщение; 2 – спинно-мозговые узлы; 3 – твердая мозговая оболочка; 4 – поясничное утолщение; 5 – мозговой конус; 6 – конский хвост; 7 – концевая нить

 

 

утолщений объясняется скоплением в этих частях мозга большого количества клеток и волокон, иннервирующих конечности.

 

На переднебоковой поверхности спинного мозга из переднелатеральной борозды выходят вентральные корешки; на заднебоковой поверхности в заднелатеральную борозду входят дорсальные корешки. Последние несут утолщения – спинно-мозговые ганглии (узлы), располагающиеся в области межпозвоночных отверстий (см. Атл.).

 

По средней линии передней поверхности мозга тянется передняя срединная щель, в которую впячивается складка мягкой мозговой оболочки. Это углубление разделяет мозг на правую и левую половины, но не достигает серого вещества; между ним и дном щели находится белая спайка, соединяющая белое вещество обеих половин мозга. На задней поверхности спинного мозга видна задняя срединная борозда. Ее стенки сращены, а от поверхности через всю толщу белого вещества проходит глиальная перегородка.

3.2.2. Серое вещество

 

Серое вещество занимает центральное положение и на поперечном срезе имеет вид "бабочки" или буквы Н. В нем выделяют передние (вентральные) и задние (дорсальные) рога, а в грудном и поясничном отделах еще и боковые (латеральные) рога. На периферии располагается белое вещество (см. Атл.).

 

В центральной части серого вещества лежит узкая полость – остаток полости нервной трубки, называемая центральным каналом спинного мозга, он содержит цереброспинальную (спинно-мозговую) жидкость. Вверху канал сообщается с IV желудочком головного мозга, а внизу – переходит в терминальный желудочек – расширенную часть полости в области мозгового конуса. С возрастом, после 40 лет диаметр центрального канала уменьшается, и он практически полностью зарастает.

 

Центральный канал окружен центральным студенистым веществом, состоящим в основном из нейроглии и небольшого числа нейронов. Вокруг центрального студенистого вещества находится центральное промежуточное серое вещество, к которому спереди примыкает белая спайка.

 

Вершина заднего рога серого вещества окружена губчатым веществом (substantia spongiosa), под которым расположено студенистое вещество (substantia gelatinosa). Последняя образована мелкими нейронами с разветвленными отростками, которые связывают между собой соседние сегменты спинного мозга, а также идут к мотонейронам передних рогов того же сегмента. Часть аксонов переходит в студенистое вещество противоположной стороны.

 

Нейроны серого вещества спинного мозга образуют скопления (ядра), имеющие постоянную локализацию (см. Атл.) и веретеновидную форму, они обычно занимают несколько сегментов. Нервные волокна входят в каждое ядро и выходят из него по нескольким спинно-мозговым корешкам. Крупные ядра, образованные мотонейронами, лежат в переднем роге, их аксоны выходят в составе передних корешков. Ядра заднего рога и промежуточного вещества образованы в основном вставочными нейронами. В боковых рогах в грудном и крестцовом отделах располагаются ядра вегетативной нервной системы (латеральное промежуточное вещество). В основании заднего рога находится значительных размеров дорсальное ядро, нейроны которого посылают свои аксоны в соседние 2–3 сегмента

 

 

спинного мозга, а также формируют задний спинно-мозжечковый путь. Между ядрами диффузно расположены отдельные нейроны, отростки которых идут к клеткам своей (ассоциативные пучки) или противоположной (комиссуралъные пучки) половины мозга. Аксоны нейронов, идущие к вышележащим отделам ЦНС, являются проекционными волокнами.

 

Серое вещество спинного мозга принято также разделять на слои (пластины), параллельные дорсальной поверхности мозга (см. Атл.). I–IV пластины являются первичной сенсорной областью. Здесь оканчивается большая часть афферентных волокон от туловища и конечностей. Их аксоны образуют восходящие проводящие пути, идущие в головной мозг. Так, нейроны I пластины получают ноцицептивную (болевую) информацию, их аксоны идут в спинно-таламический тракт своей и противоположной стороны (через переднюю белую спайку) (см. Атл.). Нейроны студенистого вещества формируют II и III пластины. Аксоны нейронов IV и VI пластин также проходят в спинно-таламическом тракте, но проводят импульсацию других модальностей (кроме ноцицептивной). Аксоны нервных клеток, лежащих в V–VI пластинах, образуют спинно-мозжечковые тракты и проецируются в ретикулярную формацию (см. ниже). В VII пластине оканчиваются волокна от костно-суставного аппарата и висцеральные, а также волокна, связывающие спинной мозг со средним и мозжечком. Пластина IX – первичная моторная область. В ее медиальной части находятся нейроны, иннервирующие мышцы туловища, а в латеральной – конечностей.

 

Между передним и задним рогом перекладины серого вещества проникают в белое, образуя сетеподобную структуру – ретикулярную формацию (см. Атл.).

3.2.3. Белое вещество

 

Белое вещество спинного мозга разделяется на три парных канатика (столба). Передний канатик расположен между срединной щелью и выходом вентральных корешков, задний – между глиальной перегородкой и дорсальными корешками, а боковой – между передней и задней латеральными бороздами.

 

Белое вещество спинного мозга образовано миелиновыми нервными волокнами – аксонами нейронов, лежащих в спинальных ганглиях или, основная часть, в сером веществе спинного мозга. Пучки нервных волокон, прилегающие непосредственно к серому веществу, образуют сегментарный аппарат спинного мозга. Они относятся к филогенетически более древним волокнам и соединяют соседние сегменты спинного мозга, не выходя за его пределы. К таким пучкам относятся передние, боковые и задние собственные пучки (см. Атл.). Они могут, например, связывать центры нижней конечности с центрами верхней. Начавшись от клеток ретикулярной формации и вставочных нейронов, волокна проходят вверх и вниз 2–3 сегмента и оканчиваются на мотонейронах передних рогов. Основная функция этих путей – обеспечение врожденных рефлексов.

 

Волокна спинальных ганглиев, проникающие в мозг в составе дорсальных корешков, продолжают свой путь по различным направлениям. Одни из волокон оканчиваются на мотонейронах переднего рога своего сегмента, на вставочных нейронах задних рогов своей или противоположной стороны, на нейронах боковых рогов (автономная нервная система) и на клетках ретикулярной формации. В результате на уровне спинного мозга осуществляются простейшие (безусловные) рефлексы в ответ на раздражения кожи и мышц всех сегментов тела и внутренних органов.

 

 

Другие волокна поднимаются вверх, входя в состав задних канатиков; они относятся к восходящим проводящим путям спинного мозга (см. Атл.).

 

Проводящие пути спинного мозга расположены снаружи от его основных пучков. Они образованы аксонами вставочных нейронов спинного мозга или чувствительных нейронов спинальных ганглиев. Эти пути появляются в филогенезе позднее собственного аппарата мозга и развиваются параллельно с формированием головного мозга. По путям проходят импульсы в восходящем направлении от чувствительных и вставочных нейронов в головной мозг и в нисходящем – от клеток вышележащих нервных центров к мотонейронам спинного мозга.

 

К восходящим путям спинного мозга относятся тонкий и клиновидный пучки, дорсальный и вентральный спинно-мозжечковые, латеральный и вентральный спинно-таламические и другие пути (см. Атл.).

 

Тонкий (fasciculus gracuis) и клиновидный (f. cuneatus) пучки проходят в заднем канатике и образованы нейритами чувствительных нейронов спинальных ганглиев. Пучки проводят возбуждение в продолговатый мозг от проприорецепторов мышц и суставов, а также от экстерорецепторов кожи. Тонкий пучок проводит импульсы от рецепторов нижних конечностей и нижней половины тела (до V грудного сегмента); клиновидный пучок – от верхних конечностей и верхней половины тела, поэтому ниже V грудного сегмента он отсутствует.

 

Задний спинно-мозжечковый путь (tractus spinocerebellaris dorsalis (posterior)) лежит в боковых канатиках. Он берет начало от клеток дорсального ядра, которое находится в основании заднего рога одноименной стороны.

 

Передний спинно-мозжечковый путь (tractus spinocerebellaris ventralis (anterior)) лежит в боковых канатиках и состоит из отростков вставочных нейронов задних рогов (V–VI пластины серого вещества). После перекреста на средней линии мозга волокна входят в состав боковых канатиков противоположной стороны.

 

Оба пути проводят проприоцептивные импульсы к мозжечку.

 

Латеральный спинно-таламический путь (tractus spinothalamicus lateralis) находится также в боковых канатиках и состоит из перекрещенных волокон вставочных нейронов основания заднего рога (IV, VI пластины). По волокнам этого пути проводятся импульсы болевой и температурной чувствительности к промежуточном мозгу.

 

Передний спинно-таламический путь (tractus spinothalamicus ventralis (anterior)) проходит в переднем канатике и проводит импульсы тактильной чувствительности.

 

Перекрест восходящих проводящих путей, совершаемый обычно волокнами вставочных нейронов на уровне своего или соседнего сегмента, приводит к тому, что импульс попадает в полушарие, противоположное той стороне тела, от которой идет возбуждение.

 

Нисходящие пути представлены волокнами, ведущими от различных отделов головного мозга к ядрам спинного мозга. Это красноядерно-спинно-мозговой, латеральный и передний корково-спинно-мозговой, текто-спинно-мозговой, преддверно-спинно-мозговой, медиальный продольный пучок и др. (см. Атл.).

 

Красноядерно-спинно-мозговой путь (руброспинальный)* (tractus rubrospinalis) начинается в среднем мозге (от нейронов красного ядра), спускается по боковому канатику противоположной стороны спинного

 

 

мозга и оканчивается на двигательных нейронах передних рогов. Проводит импульсы, управляющие тонусом скелетных мышц и непроизвольными (автоматическими) движениями.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.