Сделай Сам Свою Работу на 5

Дифракция света на одной щели

Условие минимума освещенности при дифракции на одной щели:

, где k = 2m – четное число, m = ±1, ±2, …;

условие максимума освещенности при дифракции на одной щели:

, где k = 0 и k = 2m + 1 – нечетное, m = 0, ±1, ±2, … ,

b – ширина щели (м); β – угол отклонения лучей от перпендикуляра к плоскости щели или угол направления на m-ую интерференционную полосу (рад или град) (рис. 1); λ – длина волны (м); m – порядковый номер максимума или минимума.

Рис. 1

· Для того, чтобы наблюдать дифракцию на одной щели, необходимо за решеткой поместить линзу, в фокальной плоскости которой и будет находиться экран. Тогда все параллельные лучи будут пересекаться в точках экрана (рис. 2). Но если поместить линзу вблизи щели, то точкиА и А1 совпадут. А так как линза не изменяет оптической разности хода лучей, то при решении задач ее можно не учитывать.

Рис. 2

Отсчет порядкового номера максимума или минимума освещенности при дифракции на одной щели идет от центра (самой яркой точки) интерференционной картины (рис. 3).

 

Дифракционная решётка

ДИФРАКЦИОННАЯ РЕШЁТКА - оптич. элемент, представляющий собой совокупность большого числа регулярно расположенных штрихов (канавок, щелей, выступов), нанесённых тем или иным способом на плоскую или вогнутую оптич. поверхность. Д. р. используется в спектральных приборах в качестве диспергирующей системы для пространственного разложения эл--магн. излучения в спектр. Фронт световой волны, падающей на Д. р., разбивается её штрихами на отдельные когерентные пучки, к-рые, претерпев дифракцию на штрихах, интерферируют (см. Интерференция света), образуя результирующее пространственное распределение интенсивности света - спектр излучения.

Существуют отражательные и прозрачные Д. р. На первых штрихи нанесены на зеркальную (металлич.) поверхность, и результирующая интерференционная картина образуется в отражённом от решётки свете. На вторых штрихи нанесены на прозрачную (стеклянную) поверхность, и интерференц. картина образуется в проходящем свете.



Если штрихи нанесены на плоскую поверхность, то такие Д. р. наз. плоскими, если на вогнутую - вогнутыми. В современных спектральных приборах используются как плоские, так и вогнутые Д. р., гл. обр. отражательные.

Плоские отражательные Д. р., изготовляемые с помощью спец. делительных машин с алмазным резцом, имеют прямолинейные, строго параллельные друг другу и эквидистантные штрихи одинаковой формы, к-рая определяется профилем режущей грани алмазного резца. Такая Д. р. представляет собой периодич. структуру с пост.расстоянием d между штрихами (рис. 1), к-рое наз. периодом Д. р. Различают амплитудные и фазовые Д. р. У первых периодически изменяется коэфф. отражения или пропускания, что вызывает изменение амплитуды падающей световой волны (такова решётка из щелей в непрозрачном экране). У фазовых Д. р. штрихам придаётся спец. форма, к-рая периодически изменяет фазу световой волны.

Рис. 1. Схема одномерной периодической структуры плоской дифракционной решётки (сильно увеличено): d - период решётки; W - длина нарезной части решётки.

Рис. 2. Схема, иллюстрирующая принцип действия дифракционной решётки: a - фазовой отражательной, б - амплитудной щелевой.

Рис. 3. Интерференционные функции дифракционной решётки.

Если на плоскую Д. р. падает параллельный пучок света, ось к-рого лежит в плоскости, перпендикулярной к штрихам решётки, то, как показывает расчёт, получающееся в результате интерференции когерентных пучков от всех N штрихов решётки пространственное (по углам) распределение интенсивности света (в той же плоскости) может быть представлено в виде произведения двух ф-ций: .Ф-цияJg определяется дифракцией света на отд. штрихе, ф-цияJN обусловлена интерференцией N когерентных пучков, идущих от штрихов решётки, и связана с периодич. структурой Д. р. Ф-цияJN для данной длины волны определяется периодом решётки d, полным числом штрихов решётки N и углами, образованными падающим (угол ) и дифрагированным (угол ) пучками с нормалью к решётке (рис. 2), но не зависит от формы штрихов. Она имеет вид , где , - разность хода между когерентными параллельными пучками, идущими под углом от соседних штрихов Д.р.: =АВ+АС (см. рис. 2, а - для фазовой отражательной Д. р., 2, б - для амплитудной щелевой решётки). Ф-цияJN - периодич. ф-ция с резкими интенсивными гл. максимумами и небольшими вторичными максимумами (рис. 3, а). Между соседними гл. максимумами расположено N-2 вторичных максимумов и N-1 минимумов, где интенсивность равна нулю. Положение гл. максимумов определяется из условия или , где m=0, 1, 2, ... - целое число. Откуда

т. е. гл. максимумы образуются в направлениях, когда разность хода между соседними когерентными пучками равна целому числу длин волн. Интенсивность всех главных максимумов одинакова и равна , интенсивность же вторичных максимумов мала и не превышает от .

Соотношение , называемое ур-нием решётки, показывает, что при заданном угле падения направления на главный максимум зависят от длины волны , т. е. ; следовательно, Д. р. пространственно (по углам) разлагает излучение разл. длин волн. Если дифрагиров. излучение, идущее от решётки, направить в объектив, то в его фокальной плоскости образуется спектр. При этом одновременно образуется неск. спектров при каждом значении числа , и величина т определяет порядок спектра. При m=0 (нулевой порядок спектра) спектр не образуется, т. к. условие выполняется для всех длин волн (гл. максимумы для всех длин волн совпадают). Из последнего условия при т=0 также следует, что , т. е. что направление на максимум нулевого порядка определяется зеркальным отражением от плоскости решётки (рис. 4); падающий и дифрагированный пучки нулевого порядка расположены симметрично относительно нормали к решётке. По обе стороны от направления на максимум нулевого порядка расположены максимумы и спектры m= 1, m= 2 и T. д. порядков.

 

Вторая ф-цияJg, влияющая на результирующее распределение интенсивности в спектре, обусловлена дифракцией света на отд. штрихе; она зависит от величин , а также и от формы штриха - его профиля. Расчёт, учитывающий Гюйгенса - Френеля принцип, даёт для ф-цииJg выражение

,

где - амплитуда падающей волны, - волновое число; , , х и у - координаты точек на профиле штриха. Интегрирование ведётся по профилю штриха. Для частного случая плоской амплитудной Д. р., состоящей из узких щелей в непрозрачном экране (рис. 2, б)или узких отражающих полосок на плоскости, , где , а - ширина щелей (или отражающих полосок), и представляет собой дифракц. распределение интенсивности при дифракции Фраунгофера на щели шириной а (см. Дифракция света). Вид её приведён на рис. 3 (б). Направление на центр гл. дифракц. максимума ф-цииJg определяется из условия u=0 или , откуда , т. е. это направление определяется зеркальным отражением от плоскости Д. р., и, следовательно, направление на центр дифракц. максимума совпадает с направлением на нулевой - ахроматический - порядок спектра. Следовательно, макс. значение произведения обеих ф-ций , а потому и макс. интенсивность будут в спектре нулевого порядка. Интенсивность же в спектрах остальных порядков (m 0) будет соответственно меньше интенсивности в нулевом порядке (что схематически изображено на рис. 3, в). Это невыгодно при использовании амплитудных Д. р. в спектральных приборах, т. к. большая часть световой анергии, падающей на Д. р., направляется в нулевой порядок спектра, где нет спектрального разложения, интенсивность же спектров других и даже первого порядков мала.

Если штрихам Д. р. придать треугольную несимметричную форму, то у такой фазовой решётки ф-цияJgтакже имеет дифракц. распределение, но с аргументом и, зависящим от угла наклона грани штриха (рис. 2, а). При этом направление на центр дифракц. максимума определяется зеркальным отражением падающего пучка не от плоскости Д. р., а от грани штриха. Изменяя угол наклона грани штриха, можно совместить центр дифракц. максимума ф-цииJg с любым интерференционным гл. максимумом ф-цииJN любого порядка m 0, обычно m=1 (рис. 3, г) или m=2. Условие такого совмещения: углы и должны одновременно удовлетворять соотношениям и . При этих условиях спектр данного порядка т 0 будет иметь наиб.интенсивность, а указанные соотношения позволяют определить необходимую величину при заданных . Фазовые Д. р. с треугольным профилем штриха, концентрирующие большую часть (до 80 %) падающего на решётку светового потока в спектр ненулевого порядка, наз. эшелеттами. Угол, под к-рым происходит указанная концентрация падающего светового потока в спектр, наз. углом блеска Д. р.

 



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.