Законы Архимеда и Паскаля
Практическое значение имеют два закона гидростатики: Архимеда и Паскаля.
Закон Архимеда о подъёмной (архимедовой) силе Fn , действующей на погружённое в жидкость тело, имеет вид
И гласит, что на любое тело, погруженное в жидкость, действует выталкивающая сила (Н), равная силе тяжести жидкости, вытесненной этим телом:
,
где Р – выталкивающая (архимедова) сила, н; ρ – плотность жидкости, кг/м3; g – местное ускорение свободного падения, м/сек2; V – объем погруженной части тела, м3.
Произведение ρV называют водоизмещением.
В зависимости от соотношения между силой тяжести тела и силой тяжести вытесненной им жидкости возможны три состояния тела:
1. Сила тяжести тела больше силы тяжести вытесненной жидкости:
.
Такое тело будет тонуть.
2. Сила тяжести равна силе тяжести вытесненной жидкости:
.
В этом случае тело будет плавать.
3. Сила тяжести тела меньше силы тяжести вытесненной жидкости:
.
При таком соотношении тело будет всплывать.
В строительной практике этот закон применяется, например, при расчёте подземных резервуаров на всплытие в обводнённых грунтах. На рис. 5 показан резервуар, часть которого расположена ниже уровня грунтовых вод (УГВ). Таким образом, он вытесняет объём воды, равный объёму его погружённой части ниже УГВ, что вызывает появление архимедовой силы Fп. Если Fп превысит собственный вес резервуара Gр, то конструкция может всплыть.
Закон Паскаля звучит так: внешнее давление, приложенное к жидкости, находящейся в замкнутом резервуаре, передаётся внутри жидкости во все её точки без изменения. На этом законе основано действие многих гидравлических устройств: гидродомкратов, гидропрессов, гидропривода машин, тормозных систем автомобилей.
Гидростатический напор
Гидростатический напор H — это энергетическая характеристика покоящейся жидкости. Напор измеряется в метрах по высоте (вертикали).
Гидростатический напор H складывается из двух величин (рис. 6):
,
где z — геометрический напор или высота точки над нулевой горизонтальной плоскостью отсчёта напора О-О; hp — пьезометрический напор (высота).
Гидростатический напор H характеризует потенциальную энергию жидкости (её энергию покоя). Его составляющая z отражает энергию положения. Например, чем выше водонапорная башня, тем больший напор она обеспечивает в системе водопровода. Величина hp связана с давлением. Например, чем выше избыточное давление в водопроводной трубе, тем больше напор в ней и вода поднимется на бульшую высоту.
Напоры для различных точек жидкости должны отсчитываться от одной горизонтальной плоскости О-О для того, чтобы их можно было сравнивать друг с другом. В качестве горизонтальной плоскости сравнения О-О может быть принята любая. Однако если сама труба горизонтальна, то иногда для упрощения расчётов удобнее О-О провести по оси трубы. Кроме того, на практике часто высотные отметки z и H отсчёта напоров от О-О отождествляют с абсолютными геодезическими, отсчитываемыми от среднего уровня поверхности океана. В России, например, они отсчитываются от уровня Балтийского моря.
Важная особенность гидростатического напора состоит в том, что он одинаков для всех точек покоящейся жидкости, гидравлически взаимосвязанных. Равенство напоров HA= HBпроиллюстрировано для точек А и В в резервуаре на рис. 6, невзирая на то, что они находятся на разных глубинах и давления в них неодинаковые. Следует обратить внимание, что для открытых резервуаров напор в любой точке жидкости находится очень просто: от О-О до уровня свободной поверхности воды, на которую действует атмосферное давление pатм.
Раздел 3 ГИДРОДИНАМИКА
Тема 3.1 Основы гидродинамики и уравнения движения
Жидкости
Студент должен:
знать: основные понятия и определения, уравнения гидродинамики; геометрический и энергетический смысл уравнения Бернулли, его практическое применение; принцип действия приборов для измерения скорости и расхода жидкости;
уметь: применять уравнения: расхода, неразрывности потока Бернулли при решении практических задач.
Задачи, основные понятия и определения гидродинамики. Гидравлические элементы потока. Уравнение Бернулли для идеальной жидкости. Энергетический и геометрический смысл уравнения Бернулли. Примеры практического применения уравнений гидродинамики. Измерение расхода и скорости. Мощность потока и мощность насоса. Принцип действия гидравлических машин.
Практическая работа №2.
Литература: 1, с. 57…90
Вопросы для самоконтроля
1. Что такое установившееся и неустановившееся движение жидкости?
2. Что такое линия тока и элементарная струйка?
3. Дайте определение и назовите размерность следующих гидравлических величин и характеристик: площади поперечного сечения, смоченного периметра, гидравлического радиуса, расхода воды.
4. В чем состоит геометрический и энергетический смысл уравнения Бернулли?
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|