Сделай Сам Свою Работу на 5

Что истинно в статике, но ложно в динамике?





Наше исследование статических полей близится к концу. В этой главе мы опасно близко подошли к такому пункту, когда уже следует подумывать о том, что случится, если поля начнут меняться со временем. Толкуя о магнитной энергии, нам едва удалось избежать этого, да и то потому, что мы прикрылись релятивистскими соображениями. Даже при этом наша трак­товка проблемы энергии выглядела несколько искусственно и, пожалуй, даже таинственно, потому что мы игнорировали тот факт, что движущиеся катушки должны на самом деле создавать меняющиеся поля. Теперь самое время перейти к изучению полей, меняющихся во времени, к тому, что составляет предмет электродинамики. Мы проделаем это в следующей главе. Однако прежде следует подчеркнуть некоторые моменты.

Хотя мы и начали этот курс с того, что представили полные и точные уравнения электромагнетизма, мы сразу же принялись изучать какие-то вырезанные куски, потому что так было легче. Большим преимуществом является возможность начать с простой теории статических полей и лишь потом перейти к более сложной теории, включающей динамические поля. При этом приходится с самого начала учить меньше нового матери­ала и остается время потренировать мозги, поразмять свои ум­ственные мускулы, прежде чем приступить к задачам потруднее.



Но в таком процессе кроется одна опасность — пока мы не услышали весь рассказ целиком, в нас может укорениться и выдать себя за полную та неполная истина, которую мы успели усвоить; в голове все перепутается: то, что верно всегда, и то, что справедливо только временами. Поэтому в табл. 15.1 мы даем сводку важнейших формул, которых мы касались, отделяя в ней те, что верны в общем случае, от тех, которые соблю­даются только в статике, но ложны в динамике. Эта сводка со­держит намеки на то, куда мы собственно с вами путь держим; изучая динамику, мы должны будем детально развить то, что пока приходилось описывать без доказательства.


Пожалуй, здесь стоит сделать несколько замечаний по пово­ду самой таблицы. Прежде всего вы должны обратить внимание, что уравнения, с которых мы начали, это правильные уравнения, в этом месте мы вас не вводим в заблуждение. Формула для электромагнитной силы (часто именуемой силой Лоренца) F = q(E+vXВ) также правильна. Ошибочен только закон Кулона; он годится только для статики. Четыре уравнения Максвелла для Е и В тоже правильны. Уравнения, принятые нами в статике, ошибочны, потому что мы выбросили из них все члены с производными по времени.



Закон Гаусса Ñ•E = r/e0 остается, но ротор Е в общем случае не равен нулю. Значит, Е нельзя всегда приравнивать к градиенту скаляра — электростатического потенциала. Мы увидим, что скалярный потенциал все же остается, но это уже величина, которая меняется во времени и должна употребляться для полного описания электрического поля только вместе с век­торным потенциалом. Конечно, уравнения, управляющие этим новым скалярным потенциалом, также оказываются новыми.

Мы вынуждены также распроститься с представлением о том, что Е в проводниках равно нулю. Когда поля меняются, заряды в проводниках, вообще говоря, не успевают перестраиваться так, чтобы поле все время обращалось в нуль. Они приходят в движение, но никогда не достигают равновесия. Единственное общее утверждение таково: электрические поля создают токи в проводниках. Итак, в переменных полях проводники не являются эквипотенциальными поверхностями. Отсюда также следует, что представление о емкости нельзя сделать универ­сальным.

Раз магнитных зарядов не бывает, дивергенция В всегда равна нулю. Так что В можно всегда приравнивать ÑXА. (Выходит, что меняется не все!) Но В генерируется не только токами; ÑXВ пропорционально плотности тока плюс новое слагаемое dE/dt. Это означает, что А связано с токами новым уравнением. Оно связано и с j. Если мы для собственного удобства воспользуемся свободой выбора Ñ•А, то уравнения для А и j можно будет записать так, что они приобретут простой и изящный вид. Поэтому мы выдвигаем требование, чтобы c2Ñ•А было равно -дj/dt, и тогда дифференциальные уравне­ния для А или для j оказываются такими, как в таблице.



Потенциалы А и j все еще можно выразить в виде интегралов от токов и зарядов, но это уже не те же самые интегралы, что были в статике. Удивительнее всего, однако, то, что правильный вид интегралов похож на прежний, статический, но с одним небольшим видоизменением, имеющим ясный физический смысл.

 


 

 

Когда мы берем интегралы, чтобы получить потенциалы в некоторой точке, скажем в точке (1) на фиг. 15.10, то мы обя­заны использовать значения j и r в точке (2) в более раннее время t' = t-r12/c. Как и следовало ожидать, влияние точки (2) на точку (7) распространяется со скоростью с. Это небольшое видоизменение позволяет отыскивать поля изменяющихся токов и зарядов, потому что, как только мы узнаем А и j, то В получается, как и раньше, как ÑXА, а Е = -Ñj-dA/dt.

Наконец, вы видите из таблицы, что некоторые выводы, по­лученные в статике (например, вывод о том, что плотность энергии в электрическом поле равна e0E2/2), остаются справед­ливыми и в электродинамике. Не надо обманывать себя и ду­мать, что все это естественно. Правильность любой формулы, выведенной в статическом случае, должна в динамике доказы­ваться сызнова. Например, мы знаем, что объемный интеграл от rj тоже дает электростатическую энергию. Но это верно только в статике.

В свое время мы детально разберем все эти вопросы; пока же полезно держать в уме эту сводку, чтобы знать, что не грех и позабыть, а что следует считать справедливым всегда.

 

*Если поле В выходит из плоскости рисунка, то поток, в соответ­ствии с его определением, будет отрицательным, а х0— положительным.


 

Глава 16

ИНДУЦИРОВАННЫЕ ТОКИ

Моторы и генераторы

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.