Генератор переменного тока
В оставшейся части этой главы мы применим принципы, изложенные в § 1 для анализа ряда явлений, обсуждавшихся в гл. 16. Сначала мы рассмотрим подробно генератор переменного тока. Такой генератор в основном состоит из проволочной катушки, вращающейся в однородном магнитном поле. Тот же самый результат может быть достигнут с помощью неподвижной катушки в магнитном поле, направление которого вращается по способу, описанному в предыдущей главе. Мы рассмотрим лишь первый случай. Пусть имеется круглая катушка из проволоки, которая может вращаться вокруг оси, проходящей вдоль одного из ее диаметров. И пусть эта катушка помещена в магнитное поле, перпендикулярное оси вращения (фиг. 17.6). Представим себе, что оба конца катушки выведены на внешнюю цепь с помощью каких-нибудь скользящих контактов.
Благодаря вращению катушки магнитный поток через нее будет меняться. Поэтому в цепи катушки появится э. д. с. Пусть S —- площадь катушки, а q — угол между магнитным полем и нормалью к плоскости катушки. Тогда поток через катушку равен
BScosq. (17.13)
Если катушка вращается с постоянной угловой скоростью w, то q меняется со временем как wt. Тогда э. д. с. ξ в катушке равна
или
(17.14)
Если мы выведем провода из генератора на некоторое расстояние от вращающейся катушки, в место, где магнитное поле равно нулю или хотя бы не меняется со временем, то ротор от Е в этой области будет равен нулю, и мы сможем определить электрический потенциал. В самом деле, если ток не уходит из генератора, то разность потенциалов V между двумя проводами будет равна э. д. с. вращающейся катушки, т. е.
Фиг. 17.6. Катушка из проволоки, вращающаяся в однородном магнитном поле,— основная идея генератора переменного тока.
Разность потенциалов в проводах меняется как sinwt. Такая меняющаяся разность потенциалов называется переменным напряжением.
Поскольку между проводами имеется электрическое поле, они должны быть электрически заряжены. Ясно, что э. д. с. генератора выталкивает лишние заряды в провода, пока их электрическое поле не становится достаточно сильным, чтобы в точности уравновесить силу индукции. Если посмотреть на генератор со стороны, то покажется, будто два провода электростатически заряжены до разности потенциалов V, а заряды как бы меняются со временем, создавая переменную разность потенциалов. Есть и еще одно отличие от того, что наблюдается в случае электростатики. Если присоединить генератор к внешней цепи, по которой может проходить ток, мы обнаружим, что э. д. с. не позволяет проводам разряжаться, а продолжает подпитывать их зарядами, когда из них уходит ток, стремясь сохранить на проводах одну и ту же разность потенциалов. Если генератор подключен к цепи, полное сопротивление которой равно R, ток в цепи будет пропорционален э. д. с. генератора и обратно пропорционален R. Поскольку э. д. с. синусоидально изменяется со временем, то и ток делает то же самое. Возникает переменный ток
Схема такой цепи приведена на фиг. 17.7.
Мы можем также заметить, что э. д. с. определяет количество энергии, поставляемое генератором. Каждый заряд в проводе получает в единицу времени энергию, равную F•v, где F — сила, действующая на заряд, a v — его скорость. Пусть теперь количество движущихся зарядов на единице длины провода равно n; тогда мощность, выделяющаяся в элементе ds провода, равна
Фиг. 17.7. Цепь с генератором переменного тока и сопротивлением.
В проводе скорость v всегда направлена вдоль ds, так что мощность можно переписать в виде
Полная мощность, выделяемая во всей цепи, есть интеграл от этого выражения по всей петле:
(17.15)
Вспомним теперь, что qnv — это ток I и что э. д. с. определяется как интеграл от F/q по всей цепи. Мы получаем
(17.16)
Когда в катушке генератора имеется ток, на нее непременно действуют механические силы. В самом деле, мы знаем, что вращающий момент, действующий на катушку, пропорционален ее магнитному моменту, напряженности магнитного поля В и синусу угла между ними. Магнитный момент есть ток катушки, умноженный на ее площадь. Поэтому вращающий момент равен
(17.17)
Скорость, с которой должна совершаться механическая работа, чтобы поддерживать вращение катушки, есть угловая скорость w, умноженная на вращающий момент силы:
(17.18)
Сравнивая это выражение с (17.14), мы видим, что затраты механической работы в единицу времени, требуемые для вращения катушки против магнитных сил, в точности равны eI — электрической энергии, поставляемой
э. д. с. генератора в единицу времени. Вся механическая энергия, расходуемая в генераторе, появляется в виде электрической энергии в цепи.
В качестве другого примера токов и сил, обусловленных индуцированной э. д. с., проанализируем, что же происходит в установке, показанной на фиг. 17.1. Имеются U-образная проволока и скользящая перемычка, расположенные в однородном магнитном поле, перпендикулярном плоскости параллельных проволок. Теперь предположим, что «дно» U (левая часть фиг. 17.1) сделано из проволоки с большим сопротивлением, тогда как две боковые проволоки сделаны из хорошего проводника вроде меди — в этом случае нам не надо беспокоиться об изменении сопротивления цепи при движении перекладины. Как и раньше,
э. д. с. цепи равна
(17.19)
Ток в цепи пропорционален этой э. д. с. и обратно пропорционален сопротивлению цепи:
(17.20)
Благодаря этому току на перемычку будет действовать магнитная сила, пропорциональная длине перемычки, току в ней и магнитному полю:
(17.21)
Подставляя I из (17.20), получаем для силы
(17.22)
Мы видим, что сила пропорциональна скорости перемещения перемычки. Направление силы, как легко понять, противоположно скорости. Такая «пропорциональная скорости» сила, похожая на силу вязкости, получается всякий раз, когда движущиеся проводники создают индуцированные токи в магнитном поле. Вихревые токи, о которых мы говорили в предыдущей главе, приводят также к силам, действующим на проводники и пропорциональным скорости проводника, хотя такие случаи в общем дают более сложные распределения токов, которые трудно анализировать.
При конструировании механических систем часто бывает удобно располагать тормозящими силами, пропорциональными скорости. Вихревые токи дают один из наиболее удобных способов получения таких зависящих от скорости сил.
Пример применения подобных сил можно найти в обычном домашнем счетчике — ваттметре. Там имеется тонкий алюминиевый диск, вращающийся между полюсами постоянного магнита. Этот диск приводится в движение маленьким электромотором, вращающий момент которого пропорционален мощности, потребляемой в электросети квартиры. Вихревые токи в диске вызывают силу сопротивления, пропорциональную скорости. Следовательно, скорость диска устанавливается пропорциональной скорости потребления электроэнергии. С помощью счетчика, присоединенного к вращающемуся диску, подсчитывается число оборотов диска. Так определяется полная потребленная энергия, т. е. число использованных ватт-часов.
Согласно формуле (17.22), сила от индуцированных токов, т. е. всякая сила от вихревых токов, обратно пропорциональна сопротивлению. Сила тем больше, чем лучше электропроводность материала. Причина, разумеется, заключается в том, что при малом сопротивлении э. д. с. создает больший ток, а большие токи дают большие механические силы.
Из наших формул мы можем увидеть, как механическая энергия превращается в электрическую энергию. Как и раньше, электрическая энергия, выделяемая в сопротивлении цепи, есть произведение eI, Работа в единицу времени, совершаемая при движении перекладины, есть произведение силы, действующей на перекладину, на ее скорость. Используя для силы выражение (17.21), получаем работу в единицу времени:
Мы видим, что она действительно равна произведению $I, которое мы получаем из (17.19) и (17.20). Снова механическая работа появляется в виде электрической энергии.
Взаимная индукция
Теперь нам нужно рассмотреть случай, когда проволочные катушки неподвижны, а меняются магнитные поля. Описывая образование магнитного поля токами, мы рассматривали только случай постоянных токов. Но если токи меняются медленно, магнитное поле в каждый момент будет примерно такое же, как магнитное поле постоянного тока. Мы будем считать в этом параграфе, что токи всегда меняются достаточно медленно, и можно сказать, что это утверждение справедливо.
На фиг. 17.8 показано устройство из двух катушек, с помощью которого можно продемонстрировать основные эффекты, ответственные за работу трансформатора. Катушка 1состоит из проводящей проволоки, свитой в виде длинного соленоида. Вокруг этой катушки и изолированно от нее навита катушка 2, состоящая из нескольких витков проволоки. Если теперь по катушке 1 пропустить ток, то, как мы знаем, внутри нее появится магнитное поле. Это магнитное поле проходит также сквозь катушку 2. Когда ток в катушке 1 меняется, магнитный поток тоже будет меняться, и в катушке 2 появится индуцированная э.д.с. Эту индуцированную э.д.с. мы сейчас и вычислим.
В гл. 13, § 5 (вып. 5) мы видели, что магнитное поле внутри длинного соленоида однородно и равно
(17.23)
где N1 — число витков в катушке 1, I1 — ток в ней, а l — её длина. Пусть поперечное сечение катушки 1 равно S, тогда поток поля В равен его величине, умноженной на S. Если в катушке 2 имеется N2 витков, то поток проходит по катушке N2 раз. Поэтому э. д. с. в катушке 2 дается выражением
.(17.24)
Единственная меняющаяся со временем величина в (17.23) есть I1. Поэтому э. д. с. дается выражением
(17.25)
Мы видим, что э. д. с. в катушке 2 пропорциональна скорости изменения тока в катушке 1. Константа пропорциональности — по существу геометрический фактор двух катушек, называется коэффициентом взаимной индукции и обозначается обычно m21. Тогда (17.25) записывается уже в виде
(17.26)
Предположим теперь, что нам нужно было бы пропустить ток через катушку 2 и нас интересует, чему равна э. д. с. в катушке 1. Мы вычислили бы магнитное поле, которое повсюду пропорционально току I2. Поток сквозь катушку Iзависел бы от геометрии, но был бы пропорционален току I2. Поэтому
Фиг. 17.8. Ток в катушке 1 создает магнитное поле, проходящее через катушку 2.
Фиг. 17.9. Любые две катушки обладают взаимной индукцией m, пропорциональной интегралу от ds1•ds2• (1/r12).
э. д. с. в катушке 1 снова была бы пропорциональна dI2/dt. Мы можем записать
(17.27)
Вычисление m 12 было бы труднее, чем те вычисления, которые мы проделали для m 21. Мы не будем сейчас им заниматься, потому что дальше в этой главе мы покажем, что m 12 обязательно равно m 21.
Поскольку поле любой катушки пропорционально текущему в ней току, такой же результат получился бы и для любых двух катушек из проволоки. Выражения (17.26) и (17.27) приобрели бы одинаковую форму, и только постоянные m 12 и m 21 были бы другие. Их значения будут зависеть от формы катушек и их относительного положения.
Предположим, нам нужно найти коэффициент взаимной индукции между двумя произвольными катушками, например показанными на фиг. 17.9. Мы знаем, что общее выражение для э. д. с. в катушке 1 можно записать так:
где В — магнитное поле, а интеграл берется по поверхности, ограниченной контуром 1. В гл. 14, § 1 (вып. 5) мы видели, что поверхностный интеграл от В можно свести к контурному интегралу от векторного потенциала. В нашем случае
как контурный интеграл по контуру цепи 2:
(17.29)
где I2 — ток в цепи 2, а r12 — расстояние от элемента цепи ds2 к точке на контуре 1, в которой мы вычисляем векторный потенциал (см. фиг. 17.9). Комбинируя (17.28) и (17.29), можно выразить э. д. с. в цепи 1 как двойной контурный интеграл:
В этом выражении все интегралы берутся по неподвижным контурам. Единственной переменной величиной является ток I2, который не зависит от переменных интегрирования. Поэтому его можно вынести за знак интеграла. Тогда э. д. с. можно записать как
где коэффициент m 12 равен
(17.30)
Из этого интеграла очевидно, что m 12 зависит только от геометрии цепей; он зависит от некоторого среднего расстояния между двумя цепями, причем в среднее с наибольшим весом входят параллельные отрезки проводников двух катушек. Нашу формулу можно использовать для вычисления коэффициента взаимной индукции любых двух цепей произвольной формы. Кроме того, она показывает, что интеграл для m 12 тождествен с интегралом для m 21. Таким образом, мы показали, что оба коэффициента одинаковы. Для системы только с двумя катушками коэффициенты m 12 и m 21 часто обозначают символом mбез значков и называют просто коэффициентом взаимной индукции:
m 12= m 21 = m.
Самоиндукция
При обсуждении индуцированных э. д. с. в двух катушках на фиг. 17.8 и 17.9 мы рассмотрели лишь случай, когда ток проходит либо в одной катушке, либо в другой. Если токи имеются одновременно в обеих катушках, то магнитный поток, пронизывающий каждую катушку, будет представлять сумму двух потоков, существующих и по отдельности, поскольку к магнитным полям применим принцип суперпозиции. Поэтому э. д. с. в каждой катушке будет пропорциональна не только изменению тока в другой катушке, но и изменению тока в ней самой.
Фиг. 17.10. Цепь с источником напряжения и индуктивностью (а) и аналогичная ей механическая система (б).
Таким образом, полную э. д. с. в катушке 2 следует записать в виде
(17.31)
""Аналогично, э. д. с. в катушке 1 будет зависеть не только от изменяющегося тока в катушке 2, но и от изменяющегося тока в ней самой:
(17.32)
Коэффициенты m 22 и m 11 всегда отрицательны. Обычно пишут
(17.33)
где ζ1 и ζ 2называют коэффициентами самоиндукции двух катушек (или индуктивностями).
Конечно, э. д. с. самоиндукции будет существовать даже для одной катушки. Любая катушка сама по себе обладает коэффициентом самоиндукции ζ и ее
э. д. с. будет пропорциональна скорости изменения тока в катушке. Обычно считают, Что э. д. с. и ток одной катушки положительны, если они направлены одинаково. При этом условии для отдельной катушки
можно написать
(17.34)
Знак минус указывает на то, что э. д. с. противодействует изменению тока, ее часто называют «обратной э. д. с.».
Поскольку любая катушка обладает самоиндукцией, противодействующей изменению тока, ток в катушке обладает своего рода инерцией. Действительно, если мы хотим изменить ток в катушке, мы должны преодолеть эту инерцию, присоединяя катушку к какому-то внешнему источнику, например батарее или генератору (фиг. 17.10, а). В такой цепи ток / связан с напряжением Vсоотношением
(17.35)
Это соотношение имеет форму уравнения движения Ньютона для частицы в одном измерении. Поэтому мы можем исследовать его по принципу «одинаковые уравнения имеют одинаковые решения». Таким образом, если поставить в соответствие напряжение Vот внешнего источника приложенной внешней силе F, а ток I в катушке скорости v частицы, то коэффициент индукции катушки ζбудет соответствовать массе т частицы (фиг. 17,10, б).
Таблица 17.1 • СОПОСТАВЛЕННЫЕ ВЕЛИЧИНЫ
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2025 stydopedia.ru Все материалы защищены законодательством РФ.
|