|
Силы, действующие на петлю с током; энергия диполя
Глава 15
ВЕКТОРНЫЙ ПОТЕНЦИАЛ
Силы, действующие на петлю с током; энергия диполя
Механическая и электрическая энергии
Энергия постоянных токов
В или А?
Векторный потенциал и квантовая механика
§ 6. Что истинно в статике, но ложно в динамике?
Силы, действующие на петлю с током; энергия диполя
В предыдущей главе мы изучали магнитное поле, создаваемое маленькой прямоугольной петлей, по которой течет ток. Мы нашли, что это поле диполя с дипольным моментом, равным
m= IA,(15.1)
где I — сила тока, a A — площадь петли. Момент направлен по нормали к плоскости петли, так что можно писать и так:
m=IАn,
где n — единичный вектор нормали к площади А.
Петли с током, или магнитные диполи, не только создают магнитные поля, но и сами подвергаются действию силы, попав в магнитное поле других токов. Рассмотрим сперва силы, действующие на прямоугольную петлю в однородном магнитном поле. Пусть ось z направлена по полю, а ось y лежит в плоскости петли, образующей с плоскостью xyугол q (фиг. 15.1). Тогда магнитный момент петли, будучи нормальным к ее плоскости, образует с магнитным полем тоже угол q.
Раз токи на противоположных сторонах петли текут в противоположные стороны, то и силы, действующие на них, тоже направлены врозь, а суммарная сила равна нулю (в однородном поле). Но благодаря силам, действующим на стороны, обозначенные на фиг. 15.1 цифрами 1 и 2, возникает вращательный момент, стремящийся вращать петлю вокруг оси у. Величина этих сил Fl и F2 такова:
F1=F2=IBb.
Фиг. 15.1. Прямоугольная петля с током I в однородном поле В, направленном по оси z.
Действующий на нее вращательный момент равен t=mXB, где магнитный момент m=Iab.
Их плечо равно
так что вращательный момент
Вращательный момент может быть записан и векторно:
(15.2)
То, что вращательный момент дается уравнением (15.2), мы показали пока только для довольно частного случая. Но результат, как мы увидим, верен для маленьких петель любой формы. Полезно напомнить, что и для вращательного момента, действующего на электрический диполь, мы получили соотношение подобного же рода:
Сейчас нас интересует механическая энергия нашей петли, по которой течет ток. Раз есть момент вращения, то энергия, естественно, зависит от ориентации петли. Принцип виртуальной же работы утверждает, что момент вращения — это скорость изменения энергии с углом, так что можно написать
Подставляя t =+mBsinq и интегрируя, мы вправе принять за энергию выражение
(Знак минус стоит потому, что петля стремится развернуть свой момент по полю; энергия ниже всего тогда, когда m и В параллельны.)
По причинам, о которых мы поговорим позже, эта энергия не есть полная энергия петли с током. (Мы, к примеру, не учли энергии, идущей на поддержание тока в петле.) Поэтому мы будем называть ее Uмех, чтобы не забыть, что это лишь часть энергии. И, кроме того, постоянную интегрирования в (15.3) мы вправе принять равной нулю, все равно ведь какие-то другие виды энергии мы не учли. Так что мы перепишем уравнение так:
(15.4)
Опять получилось соответствие с электрическим диполем, где было
(15.5)
Только в (15.5) электрическая энергия — и вправду энергия, а Uмех в (15.4) — не настоящая энергия. Но все равно ее можно применять для расчета сил по принципу виртуальной работы. Надо только предполагать, что ток в петле (или по крайней мере магнитный момент m) остается неизменным при повороте.
Для нашей прямоугольной петли можно показать, что Uмех соответствует также работе, затрачиваемой на то, чтобы внести петлю в поле. Полная сила, действующая на петлю, равна нулю лишь в однородном поле, а в неоднородном все равно останутся какие-то силы, действующие на токовую петлю. Внося петлю в поле, мы вынуждены будем пронести ее через места, где поле неоднородно, и там будет затрачена работа. Будем считать для упрощения, что петлю вносят в поле так, что ее момент направлен вдоль поля. (А в конце, уже в поле, ее можно повернуть как надо.)
Вообразите, что мы хотим двигать петлю в направлении x, т. е. в ту область, где поле сильнее, и что петля ориентирована так, как показано на фиг. 15.2. Мы отправимся оттуда, где поле равно нулю, и будем интегрировать силу по расстоянию по мере того, как петля входит в поле.
Фиг. 15.2. Петлю проносят через поле В (поперек него) в направлении x.
Рассчитаем сначала работу переноса каждой стороны по отдельности, а затем все сложим (вместо того, чтобы складывать силы до интегрирования). Силы, действующие на стороны 3 и 4, направлены поперек движения, так что на эти стороны работа не тратится. Сила, действующая на сторону 2, направлена по xи равна 1bВ(x); чтобы узнать всю работу против действия магнитных сил, нужно проинтегрировать это выражение по xот некоторого значения х, где поле равно нулю, скажем, от х = -¥ до теперешнего положения х2:
(15.6)
Подобно этому, и работа против сил, действующих на сторону 1,равна
(15.7)
Чтобы вычислить каждый интеграл, надо знать, как В(х) зависит от х. Но ведь сторона 1при движении рамки расположена все время параллельно стороне 2на одном и том же расстоянии от нее, так что в ее интеграл входит почти вся работа, затраченная на перемещение стороны 2. Сумма (15.6) и (15.7) на самом деле равна
(15.8)
Но, попав в область, где В на обеих сторонах 1 и 2 почти одинаково, мы имеем право записать интеграл в виде
где В — поле в центре петли. Вся вложенная механическая энергия оказывается равной
Это согласуется с выражением для энергии (15.4), выбранным нами прежде.
Конечно, тот же вывод получился бы, если бы мы до интегрирования сложили все силы, действующие на петлю. Если бы мы обозначили через В1 поле у стороны 1 а через В2 — поле у стороны 2, то вся сила, действующая в направлении х, оказалась бы равной
Если петля «узкая», т. е. если В2 и В1 не очень различаются между собой, то можно было бы написать
Так что сила была бы равна
(15.10)
Вся работа, произведенная внешними силами над петлей, равнялась бы
а это опять -mВ. Но теперь нам становится понятно, почему получается, что сила, действующая на небольшую токовую петлю, пропорциональна производной магнитного поля, как это следовало ожидать из
Другой наш результат состоит в следующем. Хоть и не исключено, что не все виды энергии вошли в формулу Uмех= m•B (ведь это просто некоторая имитация энергии), ею все же можно пользоваться, применяя принцип виртуальной работы, чтобы узнать, какие силы действуют на петли с постоянным током.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|