Сделай Сам Свою Работу на 5

Оптимизация скелета изображения





Полученный скелет изображения не является оптимальным. Это связано прежде всего с тем, что мы имеем дело с растровым изображением, а значит, изображение имеет искажения тем большие, чем меньше разрешение изображения (рис. 5.6).

 

а) б)

Рис. 5.6. Влияние разрешения на скелет изображения

Для уменьшения влияния искажений на получаемый скелет необходимо произвести оптимизацию скелета, полученного отслеживанием пути сферической волны по изображению объекта. В получаемом скелете возможно представление одного отрезка некоторой последовательностью ребер. Избиться от этого можно анализом последовательности ребер, оценивая отклонение получающейся линии от прямой. При этом точки, образующие последовательность ребер, должны отклоняться от коррелирующей прямой не больше, чем на заранее заданную величину, соизмеримую с шириной линии. В случае, если отклонение находится в допустимых пределах, необходимо в скелете заменить соответствующую последовательность ребер на одно (рис. 5.7).

Рис. 5.7. Оптимизация отрезков

Кроме оптимизации отрезков проводится оптимизация точек соединения отрезков. Наиболее часто встречающиеся искажения (рис. 5.8) исправляются с помощью анализа прилежащих к выделенной точке (А) отрезков (AB1, B1C1, AB2, B2C2, AB3, B3C3). Анализ заключается в поиске такой пары отрезков CxBx, ByCy из (B1C1, B2C2, B3C3), что CxBxByCy максимально коррелируются прямой. Тогда необходимо точку A переместить в точку пересечения прямых CxCy и 2, а затем удалить из графа точки B1, B2 и B3.



а) б)

Рис. 5.8. Оптимизация точек соединения (первый вариант)

Другим вариантом искажения является случай соединения трех отрезков в одной точке (рис. 5.9). В этом случае невозможно нахождение пары отрезков коррелируемых прямой. Точка A должна быть перемещена в центр треугольника образуемого прямыми B1C1, B2C2 и B3C3. Затем точки B1, B2 и B3 необходимо удалить из графа.

а) б)

Рис. 5.9. Оптимизация точек соединения (второй вариант)

Сегментация изображений

Сегментация – это процесс разбиения изображения на неперекрывающиеся области (сегменты), покрывающие все изображение и однородные по некоторому признаку. Все пиксели в сегменте похожи по некоторой характеристике или вычисленному свойству, например по цвету, яркости или текстуре. Соседние сегменты значительно отличаются по этой характеристике.



Цель сегментации заключается в упрощении и/или изменении представления изображения, чтобы его было проще и легче анализировать. Сегментация и выделение границ объектов играют важную роль в системах компьютерного зрения и применяются для задач распознавания сцен и выделения (определения) объектов.

Методы сегментации можно разделить на два класса: автоматические – не требующие взаимодействия с пользователем и интерактивные – использующие пользовательский ввод непосредственно в процессе работы. Например, к интерактивной сегментации можно отнести алгоритм инструмента «Волшебная палочка», реализованный во многих растровых редакторах.

Далее рассмотрим только автоматические методы. Задачи автоматической сегментации делятся на два класса:

§ выделение областей изображения с известными свойствами;

§ разбиение изображения на однородные области.

Между этими двумя постановками задачи есть принципиальная разница. В первом случае задача сегментации состоит в поиске определенных областей, о которых имеется априорная информация (например, мы знаем цвет, форму областей, или интересующие нас области представляют собой изображения известного объекта). Методы этой группы узко специализированы для каждой конкретной задачи. Сегментация в такой постановке используется в основном в задачах машинного зрения (анализ сцен, поиск объектов на изображении).



Во втором случае никакая априорная информация о свойствах областей не используется, зато на само разбиение изображения накладываются некоторые условия (например, все области должны быть однородны по цвету и текстуре). Так как при такой постановке задачи сегментации не используется априорная информация об изображенных объектах, то методы этой группы универсальны и применимы к любым изображениям. В основном сегментация в этой постановке применяется на начальном этапе решения задачи, для того чтобы получить представление изображения в более удобном виде для дальнейшей работы.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2025 stydopedia.ru Все материалы защищены законодательством РФ.