Х4 Близнецовый метод генетики человека.
Этот метод заключается в изучении закономерностей наследования признаков в парах одно- и двуяйцевых близнецов. Он позволяет выявить наследственный характер признака, определить пенентрантность аллеля, оценить эффективность действия на организм некоторых внешних факторов.
Суть метода заключается в сравнении проявления признака в разных группах близнецов при учете сходства или различия их генотипов.
Монозиготные близнецы, развивающиеся из одной оплодотворенной яйцеклетки, генетически идентичны, так как имеют 100% общих генов Сравнение монозиготных близнецов, воспитывающихся в разных условиях постэмбрионального периода, позволяет выявить признаки, в формировании которых существенная роль принадлежит факторам среды. По этим признакам между близнецами наблюдается дискордантность, т.е. различия. Напротив, сохранение сходства между близнецами, несмотря на различия условий их существования, свидетельствует о наследственной обусловленности признака.
Билет 42
Регуляция действия генов
В клетках эукариот от ДНК исходят сигналы, которые в конечном счете передаются РНК-полимеразе: стимулируют или подавляют инициацию синтеза РНК. Источником сигналов служат определенные локусы ДНК — регуляторные элементы. Эти участки имеют небольшие размеры, порядка 10 н. п. Регуляторные элементы, стимулирующие транскрипцию, называют энхансерами (англ. enhancer — усилитель), а подавляющие транскрипцию — сайленсерами (англ. silencer — глушитель, успокоитель).
Регуляторные элементы могут избирательно соединяться с белками-регуляторами.
Белки, соединяющиеся с энхансерами, называют индукторами, а соединяющиеся с сайленсерами — репрессорами.Цис-элементы действуют на гены только той молекулы ДНК, в которой они сами находятся. Энхансеры и сайленсеры могут располагаться вблизи от промотора и от стартовой точки транскрипции регулируемого гена, но могут быть и удалены от него, даже на тысячи нуклеотидных пар, как в сторону 5'-конца, так и в сторону З'-конца. Однако они могут быть сближены в результате изгибания молекулы ДНК.
Белки-регуляторы (индукторы и репрессоры) содержат по крайней мере три домена:1) домен, узнающий определенную нуклеотидную последовательность ДНК; эти домены часто имеют супервторичную структуру типов а-спираль-пово-рот-а-спираль, лейциновая застежка-«молния», цинковый палец;
2) домен, узнающий трансэлементы;
3) домен, взаимодействующий с факторами транскрипции в области ТАТА-последовательности; в результате этого белки-регуляторы влияют на транскрипцию, а именно увеличивают (индукторы) или уменьшают (репрессоры) частоту инициации транскрипции.
Каждый ген регулируется независимо от других. Следовательно, для каждого гена существуют специфические регуляторные элементы (локусы ДНК) и специфические регуляторные белки, узнающие эти элементы. Уже известно много регуляторных белков и регуляторных элементов разных генов, и постоянно обнаруживаются все новые и новые.
Присоединение регуляторных белков к энхансерам или сайленсерам зависит от других веществ — трансэлементов, сигнальных молекул, приносимых в клетку с кровью или образующихся в самой клетке. К числу таких молекул относятся гормоны, некоторые метаболиты, ионы металлов. Есть регуляторные белки, реагирующие на изменение температуры. Все эти сигналы стимулируют присоединение индукторов к соответствующимэнхансерам или репрессоров к соответствующим сайленсерам. Трансэлементами их называют потому, что они могут действовать на любую молекулу ДНК (любую хромосому), если только в ней есть подходящий цис-элемент.
Чтобы разобраться в этой сложной системе и пока неустоявшейся терминологии, рассмотрим конкретный пример — регуляцию синтеза металлотионеина. Металлотионеин — небольшой белок, содержащий много остатков цистеина, примерно 1/ от всех аминокислот, и поэтому способный связывать ионы тяжелых металлов — Zn, Си, Cd, Hg, Ag. Одна молекула металлотионеина связывает несколько ионов. Эти ионы токсичны для организма, и при избыточной концентрации выводятся в комплексе с металлотионеином. Металлотионеин постоянно синтезируется в печени и секретируется в кровь, что важно для регуляции концентраций ионов Zn и Си, поскольку они являются нормальными и обязательными компонентами организма. Но при повышенном поступлении в организм ионов тяжелых металлов синтез металлотионеина стимулируется (положительная регуляция).
Диференциальная диагностика малярии
Паразиты человека относятся к отряду кровяных споровиков.
У человека вызывают заболевание 4 вида малярийных плазмодиев:
возбудитель трехдневной малярии (Plasmodiumvivax),
возбудитель четырехдневной малярии (Plasmodiummalariae),
возбудитель тропической малярии (Plasmodiumfalciparum) и
возбудитель малярии типа трехдневной (Plasmodiumouale).
Заболевание малярией выражается в повторяющихся с определенной частотой приступах лихорадки, сопровождающихся подъемом температуры, Малярия - облигатно-трансмиссивное заболевание, передается с помощью кровососущих насекомых, природно-эндемичная инфекция.
Заражение человека происходит при укусе самками малярийного комара, содержащими малярийный плазмодий на стадии спорозоита. Спорозоиты имеют размеры 5 - 8 мкм. Током крови они разносятся по телу и внедряются в клетки печени, где превращаются в шизонтов, размножающихся бесполым путем (шизогонией). В результате этого образуются мерозоиты, которые внедряются в эритроциты, где снова растут и делятся. Цикл развития мерозоитов в эритроцитах повторяется несколько раз.
Правильное чередование приступов при малярии связано с периодичностью шизогонии в эритроцитах. Начало приступа (озноб) совпадает с распадом эритроцитов и поступлением в плазму крови мерозоитов и продуктов их жизнедеятельности, вызывающих интоксикацию организм
После нескольких циклов бесполого размножения (шизогонии) начинается подготовка к половому процессу. При этом мерозоиты, находящиеся в эритроцитах, дают начало гамонтам (подготовительные стадии образования гамет).
Макрогамонты дадут впоследствии женские половые клетки - макрогаметы, микрогамонты - мужские микрогаметы. В крови человека образования половых клеток не происходит, так как человек - промежуточный хозяин в цикле развития малярийного плазмодия. Дальнейшее развитие плазмодия осуществляется, если гамонты с кровью попадают в желудок малярийного комара при сосании им крови больного человека. Малярийные комары - окончательные хозяева в цикле развития малярийного плазмодия. В желудке комара гамонты превращаются в крупные неподвижные макрогаметы и в мелкие подвижные микрогаметы. Происходит копуляция гамет, в результате чего образуется подвижная зигота (оокинета), которая внедряется в стенку желудка комара и инцистируются на стороне, обращенной в полость тела, превращаясь в ооцисту. Ядро зиготы многократно делится. Ооциста распадается на большое количество (до 10000) спорозоитов. Оболочка спороцисты разрушается и спорозоиты попадают в полость тела комара, а затем в слюнные железы насекомого. Малярийный комар снова может заражать человека. Ни на одной стадии паразит не находится во внешней среде.
Инкубационный период длится от 2 недель до 6 месяцев. Диагноз ставят при нахождении малярийных плазмодий в крови. Кровь берут непосредственно после приступа малярии.
Профилактика связана с уничтожением мест обитания малярийного комара.
Интерфаза и ее значения
это подготовка клетки к делению, на ее частицу приходится 90 % всего клеточного цикла. На этой стадии происходят наиболее активные метаболические процессы. Ядро имеет гомогенный вид — оно заполнено тонкой сеткой, которая состоит из переплетенных между собою довольно длинных и тонких нитей хромонем. Ядро соответствующей формы, окруженное двухслойной ядерной мембраной с порами диаметром близко 40 мкм. В интерфазному ядре проходит подготовка к делению. Интерфазу разделяют на определенные периоды: G, — период, который передует репликации ДНК; S — период репликации ДНК; G2 — период с момента окончания репликации к началу митоза.
Пресинтетический период (G1 — вид. англ. gap — интервал). Происходят такие биохимические процессы: синтез макромолекулярных соединений, необходимых для построения хромосом и ахроматинового аппарата (ДНК, РНК, гистонив и других белков), возрастает количество рибосом и митохондрий, происходит накопления энергетического материала для осуществления структурных перестроек и сложных движений во время деления. Клетка интенсивно растет и может выполнять свою функцию. Набор генетического материала будет 2п2с (2n – диплоидный набор хромосом, 2с – диплоидный набор ДНК). В синтетическом периоде (S) удваивается ДНК, каждая хромосома вследствие репликации создает себе подобную структуру. Набор генетического материала составляет 2п4с.
Далее наступает потсинтетический период (G2) — клетка запасается энергией. Синтезируются белки ахроматинового веретена, идет подготовка к митозу. Генетический материал составляет 2n4с.
После достижения клеткой определенного состояния: накопления белков, удвоения количества ДНК и др. она готова к делению — митозу.
В результате митоза происходит точное равномерное распределение наследственного материала. Вследствие митоза каждая дочерняя клетка получает полный набор хромосом со строгим количеством ДНК и за их составом идентичная материнской клетке.
Молекулярно генетический и биохимический метод
Биохимические методы применяют в диагностике наследственных болезней и наследственного предрасположения к ним.Если эти заболевания вызваны генными мутациями, то обычно сопровождаются нарушением всех типов обмена веществ. Установлено около 500 болезней обмена веществ.Наследственная патология, связанная с нарушениями в ферментативных системах, вызвана рецессивными генами, а затрагивающая структурные белки -доминантными генами.
Если рецессивный ген отвечает за проявление патологического признака, то у гетерозигот может наблюдаться отклонение в обмене веществ. "Например, при фенилкетонурии у гетерозигот признак не проявляется, но после приема фенилаланина обнаруживается повышенное содержание его в крови, по сравнению с доминантнымигомозиготами. Наследственные нарушения обмена веществ почти всегда сопровождаются изменением содержания метаболитов не только в тканях, но и в биологических жидкостях.
Билет31
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|