Сделай Сам Свою Работу на 5

Плотность энергии и поток энергии в электромагнитном поле


Идея заключается в том, что должны существовать плот­ность энергии u и поток S, которые зависят только от полей Е и В. [В электростатике, например, плотность энергии, как мы знаем, можно записать в виде 1/2e0(Е•Е).] Разумеется, u и S могут зависеть от потенциалов и чего-то другого, но давайте лучше посмотрим, что мы можем написать. Попытаемся перепи­сать величину Е•j в таком виде, чтобы она стала суммой двух слагаемых, одно из которых было бы производной по времени от некоторой величины, а второе — дивергенцией. Тогда первую величину мы бы назвали и, а вторую — S (разумеется, с надле­жащими знаками). Обе величины должны быть выражены только через поля, т. е. мы хотим записать наше равенство в виде

 

(27.6)


причем левая часть уравнения должна выражаться только через поля. Как это сделать? Разумеется, нужно воспользоваться уравнениями Максвелла. Из уравнения для ротора В имеем

 


Подставляя это в (27.6), получаем выражение его только через Е и В:

 

 

(27.7)

Работа частично нами уже закончена. Последнее слагаемое есть производная по времени — это (д/дt)(1/2e0ЕЕ).

Итак, 1/2e0Е•Е должно быть по крайней мере частью u. Такое же выражение получалось у нас и в электростатике. А теперь единственное, что нам остается сделать,— это превра­тить в дивергенцию чего-то второе слагаемое.

Заметьте, что первое слагаемое в правой части (27.7) пере­писывается в виде

 

 


 

(27.8)

вы знаете из векторной алгебры, что (aXb)•c равно а•(bXc), поэтому первое слагаемое принимает вид


(27.9)


т. е. получилась дивергенция «чего-то», к которой мы так стре­мились. Получилась, но только все это неверно! Я предупреждал вас, что оператор Ñ только «похож» на вектор, а на самом деле он не «настоящий» вектор. Вспомните, что в дифференциальном исчислении существует дополнительное соглашение: когда опе­ратор производной стоит перед произведением, он действует на все стоящее правее него. В уравнении (27.7) оператор Ñ дей­ствует только на В и не затрагивает Е. Но если бы мы записали его в форме уравнения (27.9), то общепринятое соглашение гово­рило бы, что Ñдействует как на В, так и на Е. Так что это не одно и то же. В самом деле, если расписать Ñ•(ВXЕ) по ком­понентам, то можно убедиться, что оно равно E• (ÑXB) плюс какие-то другие слагаемые. Это напоминает взятие производной от произведения в обычном анализе. Например,



 

Вместо того чтобы выписать все компоненты Ñ• (BXE), мне бы хотелось показать вам один трюк, очень полезный в за­дачах такого рода. Он позволит вам всюду в выражениях, содер­жащих оператор Ñ, пользоваться правилами векторной алгебры, не попадая впросак. Трюк состоит в отбрасывании (по крайней мере на время) правил дифференциального исчисления относи­тельно того, на что действует оператор производной. Вы знаете, что порядок сомножителей важен в двух различных случаях. Во-первых, в дифференциальном исчислении: f(d/dx)g не то же самое, что g(d/dx)f; и, во-вторых, в векторной алгебре: aXb отличается от bXа. Мы можем, если захотим, на минуту отка­заться от правил дифференциального исчисления. Вместо того чтобы говорить, что производная действует на все стоящее правее от нее, мы примем новое правило, избавляющее нас от порядка, в котором записаны сомножители. После этого мы можем крутить ими, как хотим, без всяких помех.

Вот наше новое правило: с помощью индекса мы будем ука­зывать, на что же именно действует дифференциальный опера­тор; при этом порядок сомножителей не имеет никакого значе­ния. Допустим, что оператор д/дх мы обозначили через D. Тогда символ Df говорит, что берется производная только функции


 

 

Но если мы имеем выражение Dffg, то оно означает


 


Заметим теперь, что, согласно нашему новому правилу, fDfg означает то же самое. Одно и то же выражение можно записать любым из следующих способов:

 

 

Вы видите, что Df может стоять даже после всего. (Странно, почему такому удобному обозначению обычно не учат в книгах по математике и физике.)

Вы, пожалуй, удивитесь: а что, если я хочу написать произ­водную от fg? Если мне нужна производная от обоих членов? Это очень легко: вы пишете Df(fg)+Dg(fg),т.e.g(df/dx)+f(dg/dx), что в старых обозначениях как раз равно d(fg)/dx.

Вы сейчас увидите, как просто теперь получить новое выра­жение для Ñ•(ВXЕ). Начнем с перехода к новому обозначению и напишем


 

 

(27.10)

Как только мы сделали это, уже нет больше нужды придержи­ваться строгого порядка. Мы всегда знаем, что ÑE действует только на Е, a ÑB действует только на В. При этих обстоятель­ствах оператором Ñ можно пользоваться как обычным вектором. (Разумеется, после того как все будет окончено, нам захочется вернуться к «стандартным» обозначениям, которые обычно используются.) Таким образом, теперь мы можем делать различ­ные перестановки сомножителей. Так, средний сомножитель в уравнении (27.10) можно переписать как Е•(ÑBXВ). [Надеюсь, вы помните, что a•(bXc) = b•(cXa).] А последний — как В•(EXÑE). Хотя это выглядит несколько странно, но тем не менее здесь все в порядке. Если же мы теперь попытаемся вер­нуться к старым обозначениям, то должны будем расположить операторы Ñ так, чтобы они действовали на свои «собственные» переменные. В первом из них все в порядке, так что мы можем просто опустить индекс у Ñ. Второй же требует некоторой реорганизации, чтобы оператор Ñ поставить перед Е. Этого можно
добиться, переставляя сомножители в векторном произ­ведении и меняя знак:

 

 

Теперь все стоит на своем месте и можно вернуться к обычным обозначениям. Формула (27.10) эквивалентна следующему равенству:


 

 

(В этом специальном случае быстрее было бы использовать ком­поненты, но, право же, стоило потратить время ради того, чтобы показать вам математический трюк. Может случиться, что вы больше нигде его не встретите, а он очень удобен тогда, когда в векторной алгебре нужно освободиться от правила порядка членов при дифференцировании.)


Вернемся теперь к нашему закону сохранения энергии, при­чем для преобразования ÑXB в (27.7) мы используем новый результат — равенство (27.11). Вот что оно дает:

 

Теперь вы видите, что мы почти у цели. Одно из наших сла­гаемых — настоящая производная no t, ее мы используем при образовании и, а другое (превосходная дивергенция) войдет в S. К несчастью, справа в середине осталось еще одно слагаемое, ко­торое не является ни дивергенцией, ни производной по t. Так что пока еще не все закончено. После некоторых размышле­ний мы опять обращаемся к уравнениям Максвелла и, к счастью, обнаруживаем, что (ÑXE) равно —dB/dt.


Это позволяет превратить дополнительный член в чистую производную чего-то по времени:

 

Вот теперь у вас получилось то, что нужно. Уравнение для энергии переписывается в виде


 

 

А это, если мы определим u и S как

 


 

 

(27.14)


и

 

(27.15)

в точности напоминает уравнение (27.6). (Перестановкой со­множителей в векторном произведении мы добиваемся правиль­ного знака.)

Итак, наша программа успешно выполнена. Из выражения для плотности энергии мы видим, что она представляет сумму «электрической» и «магнитной» плотностей энергии, которые в точности равны выражениям, полученным нами в статике, когда мы находили выражение для энергии через поля. Кроме того, мы получили выражение для вектора потока энергии электромагнитного поля. Этот новый вектор S=e0c2EXB по имени своего первооткрывателя называется «вектором Пойнтинга». Он говорит нам о скорости, с которой энергия движется в пространстве. Энергия, протекающая в секунду через малую поверхность da, равна S•nda, где n — вектор, перпендикуляр­ный к поверхности da. (Теперь, когда у нас есть формулы для u и S, можете, если хотите, забыть все выкладки.)



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.