Сделай Сам Свою Работу на 5

Размножение клеток путем деления исходной клетки.

Т. Шванн в своих обобщениях подчеркивал одинаковость принципа развития клеток как у животных, так и у растений. Однако следует заметить, что первоначальная разработка этого принципа основывалась на ложном тезисе о развитии клеток из неклеточной «бластемы». Сформулированное позднее Р.Вирховым положение «всякая клетка от клетки» можно считать биологическим законом.

Размножение клеток, прокариотических и эукариотических, происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала (репродукция ДНК).

У эукариотических клеток единственно полноценным способом деления является митоз или мейоз (при образовании половых клеток). При этом образуется специальный аппарат клеточного деления, клеточное веретено, с помощью которого равномерно и точно по двум дочерним клеткам распределяют хромосомы, до этого удвоившиеся в числе. Митоз наблюдается у всех эукариотических, как растительных, так и животных, клеток. Современная наука отвергает иные пути образования клеток и увеличения их числа.

Клетки как части целостного организма.

Каждое проявление деятельности целого организма, будь то реакция на раздражение или движение, иммунные реакции и многое другое, осуществляется специализированными клетками. Однако, хотя клетка и является единицей функционирования в многоклеточном организме, деятельность ее не обособлена, и зависит от деятельности других клеток.

Многоклеточные организмы представляют собой сложные ансамбли специализированных клеток, объединенных в целостные, интегрированные системы тканей и органов, подчиненные и связанные межклеточными, гуморальными и нервными формами регуляции. Вот почему мы говорим об организме как о целом, а о клетках — как об элементарных его единицах, специализированных на выполнении строго определенных функций, осуществляющих их в комплексе со всеми элементами, входящими в состав сложно организованной живой системы многоклеточного единого организма. Расчлененность функций организма дает ему большие возможности для приспособления с целью сохранения вида, размножения отдельных индивидуумов.



Некоторые термины:

· организм (organismus; лат. от греч. organon орудие, орган) -- отдельное живое существо, рассматриваемое как биологическая система;

· клетка (-и) (cellula, -ae, LNH) -- элементарная живая система, состоящая из двух основных частей - ядра и цитоплазмы, способная к самостоятельному существованию, самовоспроизведению и развитию; основа строения и жизнедеятельности всех животных и растений;

· цитодиагностика -- диагностика с использованием методов микроскопического изучения отдельных клеточных элементов в препаратах, полученных из органов и тканей;

· цитометрия (цито- + греч. metreo измерять, определять) -- совокупность методов определения количества клеток, измерения объема клеток и их ядер;

· цитофизиология (цито- + физиология) -- раздел цитологии, изучающий физиологические функции клетки и ее компонентов;


Часть вторая: компоненты клетки; плазмолемма; межклеточные контакты.

Структурные компоненты клетки

 

Тремя основными компонентами клетки являются: ядро, цитоплазма и окружающая их клеточная мембрана - плазмолемма. Цитоплазма (cytoplasma) клетки включает в себя гиалоплазму, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения.

Гиалоплазма (от греч. hyalinos — прозрачный) — основная плазма, или матрикс цитоплазмы, представляет собой очень важную часть клетки, ее истинную внутреннюю среду.

Гиалоплазма является сложной коллоидной системой, включающей в себя различные биополимеры, такие как белки, нуклеиновые кислоты, полисахариды. Эта система способна переходить из золеобразного (жидкого) состояния в гелеобразное и обратно. В упорядоченной многокомпонентной системе гиалоплазмы отдельные зоны могут менять свое агрегатное состояние в зависимости от условий или от функциональной задачи; в гиалоплазме могут возникать и распадаться различные комплексы белковых молекул. В состав гиалоплазмы входят главным образом различные глобулярные белки. Они составляют 20—25% общего содержания белков в эукариотической клетке. К важнейшим ферментам гиалоплазмы относятся ферменты метаболизма сахаров, азотистых оснований, аминокислот, липидов и других важных соединений. В гиалоплазме располагаются ферменты активации аминокислот при синтезе белков, транспортные (трансферные) РНК (тРНК). В гиалоплазме при участии рибосом и полирибосом (полисом) происходит синтез белков, необходимых для собственно клеточных нужд, для поддержания и обеспечения жизни данной клетки.

Клеточные мембраны

Структурно-химическая характеристика мембран клеток

Общей чертой всех мембран клетки является то, что они представляют собой тонкие (6—10 нм) пласты липопротеидной природы (т.е. липиды в комплексе с белками). Основными химическими компонентами клеточных мембран являются липиды (~40%), белки (~60%) и углеводы (5—10%).

К липидам относится большая группа органических веществ, обладающих плохой растворимостью в воде (гидрофобность) и растворимостью в органических растворителях и жирах (липофильность). Состав липидов очень разнообразен. Характерными представителями липидов, встречающихся в клеточных мембранах, являются фосфолипиды (глицерофосфатиды), сфингомиелины и из стероидных липидов — холестерин. От холестерина зависит текучесть и стабильность мембран.

Особенностью липидов мембран является разделение их молекул на две функционально различные части: гидрофобные неполярные, не несущие зарядов «хвосты», состоящие из жирных кислот, и гидрофильные, заряженные полярные «головки». Это определяет способность липидов самопроизвольно образовывать двухслойные (т.е. билипидные) мембранные структуры толщиной 5—7 нм. Различные клеточные мембраны могут значительно отличаться друг от друга по липидному составу и набору белковых молекул.

Многие мембранные белки состоят из двух частей, из участков, богатых полярными (несущими заряд) аминокислотами, и участков, обогащенных неполярными аминокислотами: глицином, аланином, валином, лейцином. Такие белки в липидных слоях мембран располагаются так, что их неполярные участки как бы погружены в «жирную» часть мембраны, где находятся гидрофобные участки липидов. Полярная (гидрофильная) же часть этих белков взаимодействует с головками липидов и обращена в сторону водной фазы.

Среди белков клеточной мембраны выделяют т.н. интегральные белки, пронизывающие ее насквозь, и примембранные, или поверхностные, не встроенные в билипидный слой. По биологической роли белки мембран можно разделить на белки-ферменты, белки-переносчики, рецепторные и структурные белки.

Углеводы мембран связаны с молекулами липидов или белков. Такие вещества называются соответственно гликолипидами и гликопротеинами. Количество их в мембранах обычно невелико.

Как бы ни было велико различие между мембранами по количеству и составу их липидов, белков и углеводов, мембраны обладают рядом общих свойств, определяемых их основной структурой. Все мембраны являются барьерными структурами, резко ограничивающими свободную диффузию веществ между цитоплазмой и средой, с одной стороны, и между гиалоплазмой и содержимым мембранных органелл — с другой. Особенность же специфических функциональных нагрузок каждой мембраны определяется свойствами и особенностями белковых компонентов, большая часть из которых представляет собой ферменты или ферментные системы. Большую роль в функционировании мембран играют гликолипиды и гликопротеиды.



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.