Сделай Сам Свою Работу на 5

Затухание в волоконных световодах





Важнейшими параметрами световода являются оптические потери и соответственно затухание передаваемой энергии. Эти параметры определяют дальность связи по оптическому кабелю и его эффективность.

Затухание в волоконных световодах обусловлено проявлением следующих потерь:

,

где aс – собственные потери волоконных световодов; aк – дополнительные кабельные потери; aпр – потери, вызванные присутствием в световодах примесей; aик – потери на поглощение в инфракрасной области.

Собственные потери волоконных световодов состоят в свою очередь из потерь на поглощение и потерь на рассеяние :

.

Затухание в результате поглощения связано с потерями на диэлектрическую поляризацию и существенно зависит от свойств материала световода.

Эти потери обусловлены комплексным характером показателя преломления nд+ jnм, который связан с тангенсом угла диэлектрических потерь выражением

.

Затухание в результате поглощения определяется отношением потерь в световоде Рп к удвоенному значению полной мощности Р, распространяющейся по волоконному световоду. Учитывая, что Рп = GU2, Р = U2/Z, получим



,

где U – напряжение; G – проводимость материала световода; Z – волновое сопротивление световода.

Так как , а , получим

.

Выражая через комплексный показатель преломления, получаем

.

Если коэффициент преломления имеет действительное значение n = nд, то = 0 и потери на поглощение отсутствуют.

Для изменения показателя преломления волокна используются различные легирующие добавки. Некоторые из них, например бор (В2О3), имеют большее естественное поглощение, а некоторые, например германий (GeO2), – меньшее. В настоящее время при производстве стекловолокон используют легирующие добавки с низкими потерями на поглощение.

Из формул видно, что частотная зависимость затухания в результате поглощения имеет линейный характер при постоянных значениях n.

Рассеяние света в волоконном световоде в основном обусловлено наличием в материале сердечника мельчайших (около одной десятой доли длины волны) случайных неоднородностей.

При рассеянии света в волокне лучи расходятся в новых направлениях, часть из которых имеет меньший угол падения, чем угол полного внутреннего отражения. Одни лучи при этом покидают сердечник и уходят в оболочку, а другие остаются в сердечнике, но распространяются обратно к источнику излучения (рис. 21).



Такое рассеяние присутствует в любом волоконном световоде и имеет название рэлеевского рассеяния.

Рис. 21. Рэлеевское рассеяние в световоде

Затухание на рассеяние рассчитывается по формуле

,

где С – коэффициент рэлеевского рассеяния; К – постоянная Больцмана; Т – температура перехода; – сжимаемость.

Даже при отсутствии легирующих добавок чистое кварцевое стекло имеет коэффициент рэлеевского рассеяния С = 0,75 мкм4дБ/км. Легирующие добавки, которые необходимы для изменения показателя преломления сердечника световода, увеличивают степень неоднородности стекла. Поэтому, чем больше , тем больше потери вследствие рэлеевского рассеяния.

Так, для многомодового градиентного стекловолокна, легированного германием и фосфором, коэффициент рэлеевского рассеяния рассчитывается по формуле

, мкм4дБ/км.

Это означает, что при = 1 % на длине волны 1,31 мкм величина потерь вследствие рэлеевского рассеяния для многомодового градиентного световода составляет 0,39 дБ/км.

Потери на рассеяние могут быть вызваны также неоднородностями изготовления оптических волокон, например, изменением размеров диаметра или круглой формы сердечника, наличием пустот в стекле и дефектов на границе сердечник–оболочка, неравномерным распределением легирующих добавок (рис. 22).

Рис. 22. Рассеяние света на неоднородностях

Из вышеприведенных формул видно, что частотная зависимость затухания в результате рассеяния изменяется по закону квадратичной параболы.



Рассмотрим зависимость затухания за счет собственных потерь волоконного световода от частоты.

Из приведенных выше данных очевидно, что оптические потери увеличиваются с ростом частоты. При этом затухание на поглощение возрастает по линейному закону, а затухание на рассеяние увеличивается значительно быстрей по закону квадратичной параболы (рис. 23).

Рис. 23. Зависимость затухания в световоде от частоты

Из графиков видна принципиальная разница между характеристиками затухания симметричных Е01, Н01 и несимметричной (фундаментальной) волны НЕ11. Симметричные волны имеют критическую частоту f0, ниже которой передача невозможна. Фундаментальная волна не имеет критической частоты, и затухание растет плавно во всем частотном диапазоне.

Невозможно избежать поглощения света в стекловолокнах. Даже чистейший кварц сильно поглощает свет на определенных длинах волн. Так, например, на длинах волн меньше 1,3 мкм имеет место ультрафиолетовое поглощение, а на длинах волн больше 1,3 мкм – инфракрасное поглощение, которое с увеличением длины волны растет и около 1,6 мкм становится настолько значительным, что и является тем фактором, который ограничивает применение кварцевых волокон для длин волн больше приведенной.

Затухание в инфракрасной области, расположенной в диапазоне длин волн свыше 1,6 мкм, рассчитывается по формуле

,

где В и k – постоянные коэффициенты.

Для кварцевого стекла В = 0,9; k = (0,7–0,9) мкм.

Коэффициент затухания aпр связан с наличием в оптическом волокне посторонних примесей, приводящих к дополнительному поглощению оптической мощности.

На ранних этапах развития оптических волокон большую часть примесей составляли ионы металлов (никель, железо, кобальт и др.). Но в настоящее время эти примеси существенно малы в современных высококачественных волокнах, и единственной оставшейся значительной примесью является гидроксильная группа ОН. На длине волны 2,73 мкм вследствие теплового движения в этой группе атомов водорода и кислорода возникают резонансные явления, которые вызывают максимальное поглощение в стекловолокне. И если указанный пик поглощения находится вне рабочего диапазона длин волн кварцевого стекловолокна, то сопутствующие гармоники оказывают непосредственное воздействие на волокна в диапазоне длин волн от 0,7 до 1,6 мкм и вызывают три пика поглощения.

Рассмотрим типовые зависимости основных составляющих потерь от длины волны (рис. 24).

Рис. 24. Зависимость затухания отдельных составляющих в световоде от длины волны

Как видно из графика, рэлеевское рассеяние aр ограничивает нижний предел потерь в левой части, а инфракрасное поглощение aик – в правой. В рабочем диапазоне длин волн от 0,7 до 1,6 мкм величина потерь полностью определяется резонансными явлениями в гидроксильных группах ОН.

В целом затухание с увеличением длины волны уменьшается, и результирующий график зависимости a = j(l) выглядит следующим образом (рис. 25).

 

   

 

 

 

 

 

 

Рис. 25. Зависимость результирующего затухания в световоде от длины волны

Между всплесками затухания, которые обусловлены резонансными явлениями в гидроксильных группах ОН, находятся три области с минимальными оптическими потерями, получившие название окон прозрачности. С увеличением номера окна затухание уменьшается. Так, первое окно прозрачности наблюдается на длине волны 0,85 мкм, на которой величина затухания составляет 4–5 дБ/км. Второе окно прозрачности соответствует длине волны 1,31 мкм, на которой затухание составляет 1,0–1,5 мкм. Третье окно прозрачности наблюдается на длине волны 1,55 мкм, на которой затухание составляет 0,5–0,2 дБ/км. Таким образом, целесообразно, чтобы оптические системы передачи по волоконным световодам работали именно на указанных длинах волн, которые получили название рабочих. В настоящее время наибольший интерес вызывают два последних окна прозрачности, которые обеспечивают наименьшее затухание и максимальную пропускную способность волоконных световодов.

К кабельным потерям относятся потери на макроизгибы и микроизгибы.

Потери на макроизгибы обусловлены изменением геометрии луча при изгибах оптического кабеля. Рассмотрим появление таких потерь на примере световода со ступенчатым профилем показателя преломления (рис. 26).

 

φ1

 

φ’1

 

R

Рис. 26. Возникновение потерь на изгибах кабеля

На изгибе луч образует угол падения < 1, а следовательно, нарушается условие полного внутреннего отражения ( < c). Такой луч преломляется и рассеивается в окружающем пространстве (оболочке).

В многомодовых градиентных световодах моды высших порядков, распространяющиеся вблизи границы сердечник–оболочка, имеют малые значения угла падения 1, поэтому при сворачивании такого световода в круг в первую очередь теряются именно эти моды.

Затухание за счет макроизгибов рассчитывается по формуле

,

где – коэффициент, определяющий вид профиля показателя преломления; 2а – диаметр сердечника световода; R – радиус изгиба.

Изгибы одномодовых волокон вызывают непрерывную утечку мощности из моды. Эти непрерывные потери рассчитываются по формуле

,

где – длина волны, соответствующая значению нормированной частоты .

Потери от микроизгибов возникают в результате случайных отклонений волокна от его прямолинейного состояния (рис. 27). Размах таких отклонений составляет менее 1 мкм, а протяженность – менее миллиметра. Подобные случайные отклонения могут появляться в процессе наложения защитного покрытия и изготовления из стекловолокон кабеля, в результате температурных расширений и сжатий непосредственно волокна и защитных покрытий.

Рис. 27. Микроизгибы в оптических волокнах

Микроизгибы в многомодовых волокнах приводят к переходу части энергии с одних мод на другие. Потери на микроизгибы в таких волокнах не зависят от длины волны и рассчитываются по формуле

,

где k – коэффициент, зависящий от амплитуды и длины микроизгибов; а – радиус сердечника стекловолокна; b – диаметр оболочки.

В одномодовых волокнах в отличие от многомодовых потери вследствие микроизгибов зависят от длины волны. Если потери вследствие микроизгибов для многомодового волокна с диаметром сердечника 50 мкм и = 1,0 % составляют , то потери для одномодового волокна рассчитываются по формуле

,

где – радиус поля моды.

На первый взгляд кажется, что с увеличением длины волны затухание на микроизгибы уменьшается. Однако происходит увеличение потерь, так как с увеличением длины волны растет радиус поля моды:

,

где .

Потери на микроизгибы в одномодовых световодах, как правило, принимают небольшие значения, однако они существенно возрастают при механических воздействиях на оптический кабель.

 

Контрольные вопросы

1. Чем обусловлены потери на поглощение в волоконном световоде?

2. Чем вызваны потери на рассеяние?

3. Объясните природу появления окон прозрачности в кварцевых оптических волокнах.

4. Назовите причины возникновения потерь на макроизгибы.

5. Объясните природу возникновения потерь на микроизгибы.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.