Сделай Сам Свою Работу на 5

Параллельные каскадные коды

Ту́рбо-код — параллельный каскадный блоковый систематический код, способный исправлять ошибки, возникающие при передаче цифровой информации по каналу связи с шумами. Синонимом турбо-кода является известный в теории кодирования термин — каскадный код.

Турбо-код состоит из каскада параллельно соединённых систематических кодов. Эти составляющие называются компонентными кодами. В качестве компонентных кодов могут использоваться свёрточные коды, коды Хемминга, Рида — Соломона, Боуза — Чоудхури — Хоквингема и другие. В зависимости от выбора компонентного кода турбо-коды делятся на свёрточные турбо-коды и блоковые коды-произведения.

Турбо-коды были разработаны в 1993 году и являются классом высокоэффективных помехоустойчивых кодов с коррекцией ошибок, используются в электротехнике и цифровой связи, а также нашли своё применение в спутниковой связи и в других областях, в которых необходимо достижение максимальной скорости передачи данных по каналу связи с шумами в ограниченной полосе частот.

Преимущества. Среди всех практически используемых современных методов коррекции ошибок турбо-коды и коды с низкой плотностью проверок на чётность наиболее близко подходят к границе Шеннона, теоретическому пределу максимальной пропускной способности зашумленного канала. Турбо-коды позволяют увеличить скорость передачи информации, не требуя увеличения мощности передатчика, или они могут быть использованы для уменьшения требуемой мощности при передаче с заданной скоростью. Важным преимуществом турбо-кодов является независимость сложности декодирования от длины информационного блока, что позволяет снизить вероятность ошибки декодирования путём увеличения его длины.[9]

Недостатки. Основной недостаток турбо-кодов — это относительно высокая сложность декодирования и большая задержка, которые делают их неудобными для некоторых применений. Но, например, для использования в спутниковых каналах этот недостаток не является определяющим, так как длина канала связи сама по себе вносит задержку, вызванную конечностью скорости света.



Ещё один важный недостаток турбо-кодов — сравнительно небольшое кодовое расстояние (то есть минимальное расстояние между двумя кодовыми словами в смысле выбранной метрики). Это приводит к тому, что, хотя при большой входной вероятности ошибки (то есть в плохом канале) эффективность турбо-кода высока, при малой входной вероятности ошибки эффективность турбо-кода крайне ограничена.[10] Поэтому в хороших каналах для дальнейшего уменьшения вероятности ошибки применяют не турбо-коды, а LDPC-коды.

Хотя сложность используемых алгоритмов турбо-кодирования и недостаток открытого программного обеспечения препятствуют внедрению турбо-кодов, в настоящее время многие современные системы используют турбо-коды.

Применение турбо-кодов. Компании France Telecom и Telediffusion de France запатентовали широкий класс турбо-кодов, что ограничивает возможность их свободного применения и, в то же время, стимулирует развитие новых методов кодирования таких, как, например, LDPC.

Турбо-коды активно применяются в системах спутниковой и мобильной связи, беспроводного широкополосного доступа и цифрового телевидения.[8] Турбо-коды утверждены в стандарте спутниковой связи DVB-RCS. Турбо-коды также нашли широкое применение в мобильных системах связи третьего поколения (стандарты CDMA2000 и UMTS).[9]

 

BPSK, QPSK модуляция

Двоичная фазовая манипуляция (англ. BPSK — binary phase-shift keying) — самая простая форма фазовой манипуляции. Работа схемы двоичной ФМн заключается в смещении фазы несущего колебания на одно из двух значений, нуль или π (180°). Двоичную фазовую манипуляцию можно также рассматривать как частный случай квадратурной манипуляции (QAM-2).

При квадратурной фазовой манипуляции (англ. QPSK — Quadrature Phase Shift Keying или 4-PSK) используется созвездие из четырёх точек, размещённых на равных расстояниях на окружности. Используя 4 фазы, в QPSK на символ приходится два бита, как показано на рисунке. Анализ показывает, что скорость может быть увеличена в два раза относительно BPSK при той же полосе сигнала, либо оставить скорость прежней, но уменьшить полосу вдвое.

Хотя QPSK можно считать квадратурной манипуляцией (QAM-4), иногда её проще рассматривать в виде двух независимых модулированных несущих, сдвинутых на 90°. При таком подходе чётные (нечётные) биты используются для модуляции синфазной составляющей I, а нечётные (чётные) — квадратурной составляющей несущей Q. Так как BPSK используется для обеих составляющих несущей, то они могут быть демодулированы независимо.

Когерентное детектирование

При когерентном детектировании вероятность ошибки на бит для QPSK такая же, как и для BPSK:

Однако, так как в символе два бита, то значение символьной ошибки возрастает:

При высоком отношении сигнал/шум (это необходимо для реальных QPSK систем) вероятность символьной ошибки может быть оценена приблизительно по следующей формуле:

Некогерентное детектирование

Как и при BPSK, существует проблема неопределённости начальной фазы в приёмнике. Поэтому при некогерентном детектировании QPSK с дифференциальным кодированием на практике используется чаще.

Отличие QPSK от первых видов модуляции (АМн, ЧМн) в том, что плотность передаваемой информации в расчёте на частотную ширину канала (на символ, на герц) выше единицы.



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.