Сделай Сам Свою Работу на 5

Схема дискретной системы передачи

Модельсистемыпередачи дискретнойинформации

Модель системы передачи дискретной информации содержит источник сообщений, кодер, генератор М-последовательности, модулятор, блок внесения ошибки, демодулятор, датчик М-последовательности, декодер и приемник сообщений (см. фиг. 1). Источник сообщений представляет собой последовательность символов, передача которых осуществляется. Перед передачей исходная последовательность кодируется с помощью кода Хэмминга, исправляющего однократные ошибки, дополненного битом проверки на четность. Перед сообщением в канале связи находится М-последовательность, которая выполняет функции синхронизации приемника и передатчика, позволяя определить начало сообщения. Модулятор заменяет каждый бит, передаваемый в канал, группой таких битов заданной заранее длины. Все полученные биты искажаются ошибкой. Демодулятор принимает группы искаженных бит и заменяет их одним битом, значение которого определяется по методу большинства. Датчик М-последовательности определяет начало приема сообщения. Декодер производит обнаружение и исправление внесенных в сообщение ошибок. Приемник сообщений представляет собой буфер, в котором хранится принятое сообщение.

 

Понятие энтропии

Информацио́нная энтропи́я — мера неопределённости или непредсказуемости информации, неопределённость появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других. Если же учесть, что некоторые сочетания букв (в этом случае говорят об энтропии n-ого порядка, см. ниже) встречаются очень редко, то неопределённость уменьшается еще сильнее.

Для иллюстрации понятия информационной энтропии можно также прибегнуть к примеру из области термодинамической энтропии, получившему название демона Максвелла. Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу.

Энтропия — это количество информации, приходящейся на одно элементарное сообщение источника, вырабатывающего статистически независимые сообщения.

Формальные определения

Информационная двоичная энтропия для независимых случайных событий x с n возможными состояниями (от 1 до n, p — функция вероятности) рассчитывается по формуле:

Эта величина также называется средней энтропией сообщения. Величина называется частной энтропией, характеризующей только i-e состояние.

Таким образом, энтропия события x является суммой с противоположным знаком всех произведений относительных частот появления события i, умноженных на их же двоичные логарифмы[1]. Это определение для дискретных случайных событий можно расширить для функции распределения вероятностей.

Определение по Шеннону

Шеннон предположил, что прирост информации равен утраченной неопределённости, и задал требования к её измерению:

1. мера должна быть непрерывной; то есть изменение значения величины вероятности на малую величину должно вызывать малое результирующее изменение функции;

2. в случае, когда все варианты (буквы в приведённом примере) равновероятны, увеличение количества вариантов (букв) должно всегда увеличивать значение функции;

3. должна быть возможность сделать выбор (в нашем примере букв) в два шага, в которых значение функции конечного результата должно являться суммой функций промежуточных результатов.

Поэтому функция энтропии H должна удовлетворять условиям:

1. определена и непрерывна для всех , где для всех и . (Нетрудно видеть, что эта функция зависит только от распределения вероятностей, но не от алфавита.)

2. Для целых положительных n, должно выполняться следующее неравенство:

3. Для целых положительных bi, где , должно выполняться равенство:

Шеннон показал,[источник не указан 276 дней] что единственная функция, удовлетворяющая этим требованиям, имеет вид:

где K — константа (и в действительности нужна только для выбора единиц измерения).

Шеннон определил, что измерение энтропии ( ), применяемое к источнику информации, может определить требования к минимальной пропускной способности канала, требуемой для надёжной передачи информации в виде закодированных двоичных чисел. Для вывода формулы Шеннона необходимо вычислить математическое ожидание «количества информации», содержащегося в цифре из источника информации. Мера энтропии Шеннона выражает неуверенность реализации случайной переменной. Таким образом, энтропия является разницей между информацией, содержащейся в сообщении, и той частью информации, которая точно известна (или хорошо предсказуема) в сообщении. Примером этого является избыточность языка — имеются явные статистические закономерности в появлении букв, пар последовательных букв, троек и т. д. (см. цепи Маркова).

Определение энтропии Шеннона связано с понятием термодинамической энтропии. Больцман и Гиббс проделали большую работу по статистической термодинамике, которая способствовала принятию слова «энтропия» в информационную теорию. Существует связь между термодинамической и информационной энтропией. Например, демон Максвелла также противопоставляет термодинамическую энтропию информации, и получение какого-либо количества информации равно потерянной энтропии.



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.