Структура и свойства природных систем
Природные системы — это сложные пространственно-временные образования. Они включают природные компоненты и соподчиненные комплексы более низкого ранга, характеризующиеся тесными взаимосвязями между компонентами и комплексами системы. Совокупность наиболее устойчивых связей между компонентами и соподчиненными комплексами системы получила название структуры. Различают пространственную и временную структуры. Первая рассматривается как порядок расположения составных частей природной системы, их соотношение и характер взаимосвязей между ними по горизонтали и вертикали. Временная структура проявляется в виде сезонных ритмов и многолетней перестройки связей. Изучение структуры позволяет определить инвариантные (т.е. самые устойчивые) свойства природных систем и оценить их нарушенность в результате антропогенного воздействия.
С понятием «структура» связаны современные представления о целостности, устойчивости и изменчивости природных систем.
Целостность — это внутреннее единство системы, обусловленное тесными взаимосвязями между ее составными частями. Благодаря взаимосвязям изменение одних компонентов природы неизбежно ведет к изменению других, что в конечном итоге может привести к перестройке всей структуры. У геосистем целостность проявляется в свойствах, не присущих их отдельным компонентам (например, способность продуцировать биомассу), в относительной автономности, наличии объективных естественных границ, в более тесных внутренних связях по сравнению с внешними (А. Г. Исаченко, 1991).
Устойчивость чаще всего рассматривается, как свойство природных систем сохранять или восстанавливать свою структуру и функции при воздействии внешних (в том числе антропогенных) факторов. Она характеризует способность систем нормально функционировать в определенном диапазоне физико-географических условий и техногенных нагрузок. В общем плане устойчивость зависит от инвариантных свойств гео- и экокомплексов, их ранга, а также от интенсивности и продолжительности действия внешнего фактора.
Известно, что разные ландшафты в зависимости от своих свойств по-разному реагируют на одно и то же воздействие: одни изменяются в большей степени, другие — в меньшей. В то же самое время один и тот же комплекс неодинаково реагирует на разные воздействия: он может мало измениться под влиянием одних факторов и очень сильно — под влиянием других. Поэтому устойчивость систем приходится рассматривать по отношению к каждому фактору отдельно, так что число возможных ситуаций оказывается весьма значительным. В каждой конкретной ситуации механизмы устойчивости и ее порог имеют свои особенности и в каждом случае следует искать как «слабое звено», так и рычаги ее стабилизации.
Представление об устойчивости тесно связано с понятием «состояние природных систем».
Состояние системы может определить характеристику ее важнейших свойств за определенный более или менее длительный промежуток времени (сезон, год, многолетний период). Используя это понятие, М.Д. Гродзинский (1987) выделил три формы проявления устойчивости геосистем:
а) инертность — способность геосистемы сохранять свое исходное (или близкое к нему) состояние в течение заданного временного интервала;
б) восстанавливаемость — способность геосистем за определенный промежуток времени возвращаться в исходное (или близкое к нему) состояние после выхода из него в результате действия внешнего фактора;
в) пластичность — наличие у геосистем нескольких устойчивых состояний и их способность при внешнем воздействии переходить из одного состояния в другое, сохраняя свои инвариантные свойства.
Устойчивость природных систем. Устойчивым считается состояние системы, к которому она самопроизвольно возвращается, если ранее была выведена из него внешними силами. В естественных условиях оно поддерживается за счет механизма саморегулирования. Однако в настоящее время, когда антропогенные нагрузки на природу часто превышают порог устойчивости, этот механизм уже не срабатывает и природные системы переходят в неустойчивое, а нередко и в критическое состояние. В этом случае происходит качественная перестройка систем, которая приводит к смене структуры и изменению реакции на внешнее воздействие.
Изменчивость природных систем. Изменчивость рассматривается как способность под действием внешних и внутренних сил переходить из одного состояния в другое. Среди компонентов природы наиболее подвержены изменению атмосферный воздух и воды, а наиболее устойчивы горные породы и рельеф, промежуточное положение занимают биота и почвы. Изменения могут быть обратимыми и необратимыми. Если природный комплекс после какого-либо внешнего воздействия изменился, но затем за некоторый промежуток времени (приблизительно равный одному-двум поколениям жизни людей) возвратился в исходное (или близкое к нему) состояние, говорят об обратимых изменениях. Такие изменения обычно связаны с нарушением так называемых «вторичных» компонентов ландшафта — биоты, почв, водного режима. Если после вмешательства извне прежнее состояние не восстанавливается, то говорят о необратимых изменениях. Необратимые изменения чаще всего проявляются при нарушении «первичных» компонентов ландшафта, особенно ли-тогенной основы (например, при образовании карьеров или оврагов).
По глубине трансформации природных систем различают: функционирование, динамику и развитие (эволюцию).
Функционирование — это совокупность процессов передачи и превращения вещества и энергии в системе, поддерживающих ее в определенном состоянии. В результате этих процессов происходят небольшие количественные изменения компонентов природы, которые обычно имеют ритмический (суточный, сезонный, межгодовой) характер.
Под динамикой понимают направленные изменения природной системы, которые совершаются в рамках ее структуры и носят обратимый характер. К ним можно отнести сукцессии экосистем (последовательные смены их биоценозов), восстановительные смены их состояний (например, восстановление биогеоценозов после вырубок, пожаров, выпаса скота). В процессе динамики наблюдаются более глубокие изменения, чем при функционировании, но они не ведут к качественной перестройке структуры, а лишь подготавливают ее.
Развитие (эволюция) — это есть необратимые направленные изменения природной системы, приводящие к коренной перестройке ее структуры. Развитие выражается в качественном преобразовании компонентов природы и формировании новых геосистем (ландшафтов), что связано как с внешними воздействиями (природные или антропогенные), так и с внутренними причинами (саморазвитие). В естественных условиях смена структуры идет постепенно (например, зарастание озер, заболачивание лесных биогеоценозов и др.), однако при интенсивном антропогенном воздействии она может ускоряться и нередко приводит к полной деградации исходных ландшафтов.
Изменения природных систем обычно начинаются с изменения одного-двух компонентов, остальные трансформируются благодаря вертикальным и горизонтальным связям, т.е. однажды возникшие нарушения служат началом «цепной» реакции в природе. Вертикальные связи выражаются в обмене веществом и энергией между компонентами геосистемы (воздух, вода, почвы, растительность и др.). Их анализ необходим для прогноза изменений слабоизученных компонентов на основе хорошо изученных, а также для управления воздействием на один компонент в целях получения положительного эффекта от других. Горизонтальные связи проявляются в обмене веществом и энергией между соседними геосистемами (более низкого и равного рангов). Их изучение позволяет:
а) определить ареал влияния инженерных сооружений на природу, что очень важно для выявления зоны возможного загрязнения окружающей среды;
б) проанализировать возможность антропогенного воздействия на один ландшафт для благоприятного изменения другого.
Связи могут быть прямыми (воздействие передается с выхода одной системы на вход другой) и обратными (воздействие передается «назад» по цепочке связей с выхода системы на ее вход).
Обратные связи подразделяют на положительные и отрицательные. При положительной обратной связи выходной импульс усиливает воздействие на входе, что часто нарушает равновесие в системе (например, при образовании лавин). При отрицательной обратной связи выходной импульс ослабляет действие входного сигнала и обычно ведет к стабилизации системы (например, уменьшение стока в озеро сокращает площадь его зеркала, а тем самым и величину испарения, что восстанавливает его водный баланс). Отрицательные обратные связи выступают в качестве «рычага» саморегулирования природных систем и, следовательно, определяют их устойчивость и структуру.
Саморегулирование рассматривается, как способность систем без вмешательства извне поддерживать свое состояние, несмотря на изменение внешних факторов (например, сохранение биогеоценозом одного уровня продуктивности в разные по погодным условиям годы). Саморегулирование осуществляется до тех пор, пока процессы, протекающие в природной системе, способны нейтрализовать нежелательные воздействия. Если защитные механизмы истощаются, она либо разрушается, либо должна изменить структуру. Способность системы к изменению структуры путем перестройки ее внутренних связей получила название самоорганизации (А. Д. Арманд, 1988).
Благодаря саморегулированию и самоорганизации природные системы могут поддерживать экологическое равновесие — сбалансированное соотношение между приходом и расходом вещества и энергии. В этом случае нарушения, связанные с внешним воздействием, как бы компенсируются процессами саморегулирования и самоорганизации. В результате формируются относительно устойчивые системы, способные поддерживать состояние динамического равновесия с окружающей природной средой. Нарушение равновесия нередко ведет к подрыву природно-ресурсного потенциала (например, падению биологической продуктивности), поэтому поддержание или восстановление равновесного состояния систем — одна из предпосылок рационального использования и охраны природных ресурсов.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|