Сделай Сам Свою Работу на 5

Возбуждения ЭТИХ КЛеТОК, Vm.nx П 2 глава





Нередко причиной медленного про­ведения или блокады бывает сниже­ние потенциала покоя (максималь­ного диастолического потенциала) в клетках, которым в нормальных ус­ловиях свойствен быстрый электриче­ский ответ (клетки Пуркинье, сокра­тительные клетки предсердий и же­лудочков). Скорость проведения им­пульса в этих клетках непосредствен­но связана с крутизной и амплитудой фазы О ПД, т. е. с такими характери­стиками, которые определяются про­центом открытых быстрых Na кана­лов мембраны в момент возбуждения и натриевым электрохимическим гра­диентом (соотношение вне- и внутри­клеточной концентраций ионов Na+). В свою очередь, существует тесная зависимость между процентом Na ка­налов, способных к открытию, и ве­личиной максимального диастоличе-ческого потенциала мембраны. Если под влиянием патологических воз­действий он понижается, уменьшает­ся и ПД, соответственно замедляется проведение импульса. Потенциал действия со сниженной фазой 0 за счет инактивации быстрых Na кана­лов мембраны отражает «подавлен­ный быстрый ответ». При уменьше­нии потенциала покоя до уровня —50 мВ инактивируется около 50% Na каналов, и возбуждение (прове­дение) становится невозможным. Возникающие блокады могут быть как однонаправленными, так и дву­направленными.



В части случаев, даже при значи­тельном уменьшении потенциала по­коя, проведение импульса сохраня­ется, правда, резко замедленное. Воз-


буждение клеток, т. е. регенератив­ная деполяризация мембраны, обес­печивается в этих условиях медлен­ными входящими Са++- и Na+-TOKa-ми, поскольку медленные Са, Са — Na и Na каналы мембраны устойчи­вы к снижению потенциала покоя. «Быстрые» клетки превращаются в «медленные» клетки с выраженным торможением скорости проведения или с возникновением блокады.

Одной из форм нарушенной про­водимости является декрементное (затухающее) проведение, т. е. про­грессирующее замедление проведе­ния в сердечном волокне, по длинни-ку которого постепенно снижается эффективность стимула (ПД) и (или) возбудимость ткани. Этот про­цесс обычно развертывается в функ­ционально подавленных волокнах, на что обратил внимание еще J. Erlanger (1906), впервые выдвинувший кон­цепцию о декрементном проведении. В 1928 г. F. Schmitt и J. Erlanger предложили модель декрементного проведения: на длинную мышечную полоску, вырезанную из желудочка черепахи, они воздействовали раство­ром, содержавшим высокую концент­рацию ионов К+. Вероятно, такой же характер носят нарушения проводи­мости в волокнах Пуркинье, сохра­нившихся после экспериментального инфаркта миокарда, а также блока­ды в местах соединения волокон Пур­кинье с мышечными сократительны­ми волокнами [Bigger J., 1980; Gil-mour R. et al., 1985].



Другая форма нарушенной прово­димости представлена неравномер­ным проведением. Если в параллель­но расположенных сердечных волок­нах проведение становится декре-ментным, но не в одинаковой степе­ни, то вместо единого фронта возбуж­дения появляются опережающие и запаздывающие волны. Деполяриза­ция соседних волокон происходит не­одновременно, общая эффективность стимула падает, и возможно развитие частичной или полной блокады его проведения.

В 80-х годах рядом авторов подчер-


кивается значение неравномерностеи в распределении межклеточных со­единений для возникновения нару­шений проводимости [Spach M. et al., 1981, 1982, 1986]. Основанием для та­кого вывода послужили данные об анизотропности сердечной мышцы и связанным с ней более быстрым про­ведением импульса вдоль, чем попе­рек мышечного волокна. Соответст­венно, общее время открытия Na ка­налов оказывается более продолжи­тельным, когда импульс проводится вдоль волокна, чем поперек его. Та­кого же рода неравномерности прояв­ляются в тех участках, где мышеч­ные пучки разветвляются пли соеди­няются с другими пучками, что и в норме приводит к внезапному замед­лению ПД. В патологических услови­ях при ослаблении деполяризующе­го тока или межклеточных связей здесь могут возникать блокады.



Гипотеза, развиваемая G. Мое и сотр. [Antzelevitch С., Мое G., 1981; Antzelevitch С. el al., 1985], основыва­ется на многочисленных эксперимен­тальных данных, показывающих, что электротоническое взаимодействие между двумя возбудимыми участка­ми, разделенными небольшой зоной высокого сопротивления, сопровож­дается резким замедлением проводи­мости в дистальном участке волокна. Такие факторы, как ограниченная ишемия миокарда, местная высокая концентрация ионов К+, локальное сдавление или охлаждение и другие воздействия могут вызвать невозбу­димость небольшого сегмента в сер­дечном волокне (волокне Пуркинье) и тем самым способствовать электро-тонически опосредованному ступен­чатому торможению передачи им­пульса через невозбудимую зону. По мнению С. Antzelevilch и соавт. (1985), этот механизм играет даже более важную роль в развитии час­тичных или полных блокад в сердце человека, чем изменения амплитуды ПД или скорости возрастания его фазы 0 (электрический ответ).

Мы кратко рассмотрели особенно­сти механизмов блокирования им-


пульсов. При изложении отдельных форм аритмий будет уделено внима­ние таким нарушениям, как скрытое проведение, однонаправленные бло­кады и др. Непосредственное отно­шение к расстройствам проводимости имеет и повторный вход импульса (re-entry).

ПОВТОРНЫЙ ВХОД ИМПУЛЬСА (RE-ENTRY) И ЕГО КРУГОВОЕ ДВИЖЕНИЕ (CIRCUS MOVEMENT)

Как возможный механизм сердеч­ных аритмий re-entry было распозна­но еще в начале XX в. [Мауег А., 1906, 1908; Mines G., 1913, 1914; Car-rey W., 1914]. Этим термином обозна­чают явление, при котором импульс, совершающий движение по замкну­тому пути (петле, кругу, кольцу), возвращается к месту своего возник­новения и повторяет движение (рис. 12). Фундаментальное изуче­ние re-entry было предпринято F. Schmitt, J. Erlanger (1928) в уже упоминавшихся нами опытах с мы­шечной полоской из желудочка чере­пахи, подвергнутой воздействию дав­ления, холода или раствора с высо­кой концентрацией ионов К+. Авто­ры, в частности, предположили, что избыток ионов К 1~ в наружной среде вызывает продольное разделение мышцы на два пути с антероградной блокадой проведения по одному из них. Искусственный стимул распро­страняется аптероградно по другому пути, а затем ретроградно продвига­ется по ранее блокированному пути к месту стимуляции. Это было первое четкое упоминание о возможности однонаправленного блокирования. Схемы повторного входа, предложен­ные исследователями для развет­вленного и неразветвленного волок­на, воспроизводятся с небольшими изменениями на рис. 13.

F. Schmitt, J. Erlanger (1928) ука­зали также, что аналогичный процесс циркуляции может возникать в серд-



 





 


Рис. 13. Оригинальные схемы re-entry, пред- Рис. 14. Схема re-entry вокруг анатомиче-
ставленныо F. Schmitt, J. Erlanger (1928) ского препятствия: macrore-entry no M. Al­
l-повторный вход в разветвленных мышечных lessie (объяснение в тексте),
волокнах; II—повторный вход в синцитиальной
структуре мышечной полоски.


це млекопитающих в очень неболь­ших петлях, т. е. в форме microre-en-try. В экспериментальных работах, выполненных в 70-х годах, эта гипо­теза получила подтверждение [Crane-field P., Hoffman В., 1971; Crane-field P. et al., 1971; Wit A. el al., 1972; Sasyniuk В., Mendez С., 1973]. Например, вызванное концентриро­ванным раствором ионов К+ тормо­жение скорости проведения в волок­нах Пуркинье собаки до 0,01—0,1 м/с и укорочение в них периода рефрак-терности сопровождаются уменьше­нием кольцевого пути повторного входа до очень небольших размеров (^1 мм). Длина волны возбужде­ния, равная произведению из ско­рости проведения на длительность рефрактерности, соответствует вели­чине такой минимальной петли re­entry.

Современные представления о re­entry усложнились, но они по-преж­нему основываются на классических данных. Различают: a) macrore-entry (макрориентри), или упорядоченное


(ordered) re-entry; б) microre-entry (микрориентри), или «случайное» (random) re-entry. Разумеется, при таком делении учитывают размеры петли (круга), в которой осуществ­ляется повторный вход. Однако не меньшее значение имеют электрофи­зиологические особенности каждого из этих двух подвидов re-entry. Мы приводим их описание, основываясь на результатах известных экспери­ментальных исследований М. Allessie и сотр. (1974—1984).

Для формирования macrore-entry с характерными для него свойствами требуются определенные условия:

а) наличие устойчивой замкнутой петли, длина которой зависит от пе­риметра анатомического невозбуди­мого препятствия, вокруг которого движется импульс (рис. 14);

б) однонаправленная блокада про­ведения в одном из сегментов петли re-entry [Quan W., Rudy Y., 1990];

в) длина движущейся волны воз­буждения должна быть короче дли­ны петли; благодаря этому перед


фронтом («головой») распространя­ющегося по кругу импульса всегда имеется участок ткани, вышедший из состояния рефрактерности и восста­новивший свою возбудимость; этот сегмент, или «окно возбудимости», имеет протяженность до 20% длины всей петли. Именно в этот «зазор» стараются попасть, нанося экстрасти­мулы, чтобы прервать круговое дви­жение импульса при реципрокных тахикардиях. Укорочение рефрактор­ного периода клеток, образующих петлю, способствует расширению «окна возбудимости», но оно не ока­зывает влияния на скорость распро­странения импульса и частоту ритма. Умеренное удлинение периода ре­фрактерности суживает «окно воз­будимости» тоже без воздействия на скорость движения импульса по пет­ле и на частоту ритма. При значи­тельном удлинении рефрактерности «окно возбудимости» может закрыть­ся, циркулирующая волна наталки­вается на участок, находящийся в состоянии функциональной рефрак­терности; движение импульса резко замедляется либо прекращается [Feld G. et al., 1986]. Описанный меха­низм mucrore-entry лежит, как пола­гают, в основе трепетания предсер­дий, а также некоторых форм реци-прокной тахикардии [Медвинский А. Б., Перцов А. М., 1989].

При другой разновидности повтор­ного входа — microre-entry — движе­ние импульса происходит по малому замкнутому кольцу, не связанному с каким-либо анатомическим препят­ствием. Теоретическое обоснование этому процессу было дано еще Th. Le­wis (1925). М. Allessie и соавт. произ­водили картографирование левого предсердия кролика в тот момент, когда с помощью электрического экстрастимула была вызвана пред-сердная тахикардия с частотой от 400 до 800 в 1 мин. Регистрацию возбуж­дения в различных участках пред­сердия производили как по его пери­метру, так и по радиусу. Можно бы­ло видеть, что импульс совершал не только круговое, но и цептростреми-


 

Рис. 15. Схема re-entry no малому кругу, не связан­ному с анатомическим препятствием — leading circle no M. Allessie (объ­яснения в тексте).

тельное движение в разных направ­лениях. По мере приближения к центру амплитуда и скорость подъе­ма фазы О ПД понижались, и воз­буждение затухало. Клетки в центре циркулировавшей волны давали только локальный электрический от­вет, поскольку они поддерживались в рефракторном состоянии под воздей­ствием поступавших с разных сторон импульсов. Место схождения этих импульсов служило функциональной основой для циркуляции волны воз­буждения. Оно как бы заменяло ана­томическое препятствие и защищало возбуждение от шунтирования (рис. 15).

Такое явление можно сравнить с водоворотом и воронкой в его центре. М. Allessie и соавт. (1977, 1980) на­звали эту движущуюся, вращающую­ся систему термином leading circle (leading circuit), т.е. «ведущий кру­жок» (цикл), или ведущая петля microre-entry, которая и определяет частоту возбуждения миокарда пред­сердий.

В предсердиях может быть не­сколько таких кругов, и самый мень­ший из них оказывается ведущим, так как в круге с наименьшим диа­метром будет и самое короткое время обращения волны возбуждения. При столь малых размерах круга стиму­лирующий эффект движущейся вол­ны оказывается достаточным, чтобы возбудить лежащий впереди участок миокарда, еще не вышедший из сос­тояния функциональной рефрактер­ности. Другими словами, в кольце microre-entry нет «окна», т. е. зоны полностью восстановленной возбуди­мости; «голова» волны непосредст­венно следует за ее «хвостом». Дли­на ведущего круга оказывается рав­ной длине волны возбуждения.



 



Рис. 16. Схема сложного многоколь­цевого re-entry в зоне инфаркта миокарда (по N. El-Sherii' и соавт.).


Ниже суммированы основные свой­ства leading circle:

а) размеры ведущего круга не яв­ляются фиксированными, они опре­деляются длиной волны возбужде­ния, которая, в свою очередь, зависит от длительности функционального рефрактерного периода (ФРП) мы­шечной ткани и от скорости проведе­ния в ней импульса; укорочение ФРП или замедление скорости прове­дения ведет к сужению (уменьше­нию) ведущего круга; когда же ФРП удлиняется, а скорость проведения возрастает, ведущий круг увеличива­ется в размерах; как видно, актив­ность малого круга детерминируется не его длиной, а электрофизиологиче­скими свойствами мышечных воло­кон, образующих этот круг;

б) в ведущем круге отсутствует участок, полностью восстановивший свою возбудимость; воздействовать на такой круг можно только с помощью стимула, сила которого значительно превышает диастолический порог возбуждения миокарда;

в) частота ритма, вырабатываемо­го в ведущем круге, обратно пропор­циональна длительности ФРП: при его укорочении число импульсов в единицу времени возрастает.

Необходимо упомянуть еще об од­ном механизме — re-entry в нераз­ветвленном волокне. Речь идет об {(отраженном повторном входе-,) (re­flected re-entry). Развивающие эту


концепцию J. Jalife, G. Мое (1981), С. Antzelevitch и соавт. (1985) разра­ботали экспериментальную модель, основу которой составляет электрото-нически опосредованное замедление проводимости. В неразветвленном во­локне Пуркинье создается узкая зона (2 мм) функциональной невозбуди­мости, через которую осуществляет­ся медленное элсктротоническое движение импульса от проксималь-ного к дистальному участку волокна. Если время этого антероградного дви­жения велико, то создаются условия для электротоничсского тока в ретро­градном направлении с повторным возбуждением проксимального участ­ка волокна, вышедшего из состояния рефрактерности. Таким образом, им­пульс движется вперед и назад через один и тот же функционально блоки­рованный сегмент благодаря электро­тонической передаче, а не вследствие продольного разделения волокна на 2 канала, как предусматривается в более старых моделях.

По-видимому, многие сложные та-хиаритмии, в частности фибрилля-ции, связаны с механизмами microre-entry. Сочетания (иногда весьма при­чудливые) неправильных петель re­entry, лежащих в разных плоскостях, возникают у больных с желудочковы­ми тахикардиями в остром периоде инфаркта миокарда [Перцов А. М., Фаст В. Г., 1987; El-Sherif N. et al., 1983] (рис. 16).


Глава 3

МЕТОДЫ ИССЛЕДОВАНИЯ

БОЛЬНЫХ

С АРИТМИЯМИ

И БЛОКАДАМИ СЕРДЦА

РАССПРОС БОЛЬНОГО И ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

- Основы современной клинической диагностики нарушений сердечного ритма и проводимости были разрабо­таны К. Wenckebach еще до созда­ния электрокардиографического ме­тода. Поводом для обследования слу­жат жалобы больного, которые сов­местимы с представлениями об арит­миях. Больных беспокоят сердцебие­ния, сопровождающиеся слабостью, головокружением, одышкой, полиу-рией, болевыми ощущениями в обла­сти сердца, а также перебои, паузы в сокращениях сердца, обмороки, эпи­зоды спутанности сознания, необъяс­нимые случаи травматизма (падения, переломы костей и т. д.), эпилептп-формные припадки (20% больных, переносящих такие припадки, имеют тяжелые тахиаритмии или блокады). Однако патологическое значение аритмий не ограничивается этой сим­птоматикой. Центральное место в их клинике занимают нарушения гемо-динамики по застойному или ишеми-ческому типу. Аритмии создают так­же угрозу эмболизации жизненно важных органов и могут провоциро­вать развитие более тяжелых нару­шений ритма, в частности ФЖ, кото­рая является основной причиной вне­запной смерти больных с ИБС, кар-диомиопатиями и другими заболева­ниями сердца.

У постели больного врач распола­гает возможностями не только для выявления аритмий сердца, но и для суждения о природе некоторых из них. Это достигается тщательным

сбором анамнеза, пальпацией арте­риального пульса, выслушиванием

сердца, осмотром яремных вен. Огра-


ничимся несколькими примерами, по­скольку более подробные сведения о физических методах исследования мы приводим при изложении отдель­ных форм аритмий и блокад.

С. П. Боткин в своей лекции «О стенозе левого венозного отверстия», (по публикации 1899 г.) указывал, что у больной с этим пороком сердца «.. .сокращения неравномерны по времени, они могут довольно резко ме­нять свое число и притом без всяких видимых причин». И далее: «.. .мне кажется, что не каждая волна (пуль­са — М.К.) одинаковой величины, что она то бывает побольше, то по­меньше...». В этих немногих словах дано практически исчерпывающее описание сердечного ритма (пульса) при ФП. Современный врач для под­тверждения диагноза привлечет и та­кие признаки, как исчезновение трех-волновой пульсации яремных вен, сменяющейся их нерегулярной, мел­кой ундуляцией, различная гром­кость I тона и в некоторых случаях дефицит пульса, на что также обра­щал внимание С. П. Боткин.

Если у больного определяется пра­вильный, одинакового наполнения пульс с частотой 150 в 1 мин при устойчивой громкости I тона, врач вправе заподозрить ТП с АВ узловой блокадой 2:1. На яремных венах в этом случае видна регулярная пуль­сация с частотой 300 в 1 мин. При исследовании яремного венного пуль­са можно распознать и неполную АВ диссоциацию: на фоне «пушечных» волн в момент совпадения предсерд-ных и желудочковых сокращений пе­риодически появляется отрицатель-


ный венный пульс — при «захватах» желудочков синусовыми импульсами.

Вполне удовлетворительно диагно­стируется экстрасистолическая арит­мия как по преждевременным малым пульсовым волнам, так it по следую­щим за ними паузам. При аускульта-ции сердца выявляются два (I и II) или один (I) экстрасистолический тон.

Физические методы исследования
позволяют установить причину бра-
дикардии. Урежепие пульса до 40 г.
1 мин может зависеть по меньшей мо­
ре от трех причин: а) желудочковой
экстрасистолической бигеминии (рас­
познается при выслушивании серд­
ца); б) С А блокады 2:1; в) АВ бло­
кады 2:1. Различие между двумя по­
следними формами становится оче­
видным при осмотре пульса на ярем­
ных венах. У больного с СА блокадой
число волн а или с яремного венного
пульса соответствует числу пульсо­
вых волн на лучевой артерии, т. е. их
будет 40 в 1 мин. При АВ блокаде
2:1 яремных воли а или с будет в
2раза больше (80 в 1 мин),чем волн
периферического артериального
пульса. Регулярная брадикардия со
«случайными» пушечными волнами
яремного венного пульса и пушечны­
ми I тонами — характерный признак
полной АВ блокады.

К числу диагностических относят и ряд приемов, оказывающих проти-поаритмическое действие; например, устранение приступа тахикардии при массаже синокаротидной области или с помощью маневра Вальсальвы слу­жит для врача указанием па то, что в основе тахикардии лежит механизм re-entry и т. д.

ЭЛЕКТРОКАРДИОГРАФИ­ЧЕСКИЙ МЕТОД

Наиболее полное, а во многих слу­чаях исчерпывающее, представление о различных формах аритмий и бло­кад сердца дает регистрация ЭКГ в 12 стандартных отведениях. Иногда для исследования ритма можно огра-


ничиться записью одного-двух отве­дений, в частности Vi и aVF, позво­ляющих судить о форме и полярно­сти эктопических зубцов Р.

Если нарушения ритма и проводи­мости носят преходящий характер, то требуются повторные регистрации ЭКГ, сопоставления их со старыми кривыми и, разумеется, со всем ком­плексом клинико-анамиестических данных. Часто появляется необходи­мость в протяженных записях, по­скольку на длинных лентах облегча­ется диагноз таких аритмий, как па-расистолия, хронические (постоянно-возвратные) тахикардии, многочлен­ные периодики Венкебаха, преходя­щие СА и АВ блокады. Более продол­жительные (многочасовые) монитор-ные наблюдения за ЭКГ осуществля­ют с помощью кардиоскопов (ритмо-кардиоскопов) у постельных боль­ных, страдающих такими заболевани­ями, как острый инфаркт миокарда, миокардиты, кардиомиопатии, пол­ная АВ блокада, синдром брадикар-дии — тахикардии, рецидивирующие ЖТ и др.

Амбулаторная мониторная регист­рация ЭКГ. Диагностика сердечных аритмий и блокад получила солид-гтое основание после того, как в 1961 г. N. Holter предложил метод непрерывной записи ЭКГ на магнит­ную ленту в течение 8 ч. Усовершен­ствование метода удлинило время ре­гистрации ЭКГ до 24—48 ч. В на­стоящее время существуют многочи­сленные технические модификации схемы Холтера [Morganroth J., 1985]. В нашей стране был создан аппарат этого класса: «Лента-МТ» — «систе­ма для динамической электрокардио­графии» [Мазур Н. А. и др., 1984].

Любой из таких аппаратов состоит из двух частей: 1) записывающего устройст­ва: небольшого, легкого кассетного магни­тофона, получающего питание от батареи; больной носит его в футляре на ремне, пе­реброшенном через плечо и закрепленном на поясе; 2) расшифровывающего устрой­ства: стационарного прибора, воспроизво­дящего ЭКГ и обеспечивающего ее про­смотр и анализ врачом.


При записи ЭКГ на двух каналах на грудную клетку накладывают 5 электро­дов: а) индифферентный — над рукояткой грудины, активный — на V ребре по левой срединно-ключичной линии; б) индиффе­рентный — справа у края рукоятки груди­ны, активный — у основания мечевидного отростка; в) пятый электрод заземления— на VI ребре по правой срединно-ключич­ной линии. Два биполярных отведения Холтера могут быть сопоставимы с отведе­ниями V4 и Vi Вильсона. Можно довольст­воваться и одноканальной записью, т. е. одним биполярным отведением Холтера, располагая активный электрод по выбору в точках, соответствующих отведениям V4 или V5 или Ve. Чтобы избежать нередко встречающихся артефактов, электроды и кабель электродов закрепляют на коже лентами, а участки кожи специально гото­вят, освобождая их от волос, жира, влаги.

Современные системы расшифров­ки знаков на магнитной ленте позво­ляют просмотреть суточную ЭКГ больного (более 100 000 сердечных циклов) со скоростью в 60—240 раз быстрее реального времени регистра­ции ЭКГ. Кроме того, в большинство анализирующих систем имеется при­способление для звукового контроля за сердечным ритмом: на фоне посто­янного жужжания появляется звук, высота которого тем выше, чем боль­ше учащается ритм. Внезапно начи­нающаяся тахикардия сопровождает­ся резким изменением сигнала, и да­же одиночная экстрасистола преры­вает фоновое жужжание.

При необходимости участок арит­мии переписывают с обычной ско­ростью на электрокардиографиче­скую бумагу. По отметчику времени можно судить о том, в какое время суток разыгрывались аритмические эпизоды. Анализ ЭКГ Холтера преду­сматривает подсчет экстрасистол и случаев тахикардии за каждый час регистрации и за 24 ч. В последние годы холтеровские системы оснаща­ются компьютерными устройствами, значительно расширяющими возмож­ности амбулаторной электрокардио­графии [Kennedy H., Ratcliff L, 1987]. Созданы приборы, включающие за­пись ЭКГ только в период возник­новения аритмии [Kennedy H. et al., 1987]. Это происходит автоматически


либо осуществляется больным в мо­мент появления у него симптомов на­рушенной сердечной деятельности [Winkle R., 1987]. Последний способ регистрации менее надежен, посколь­ку состояние больного может поме­шать ему вовремя начать запись ЭКГ (обморок, сильные боли, эмболии, из­менения психики и др.). Кроме того, некоторые потенциально опасные аритмии или блокады могут проте­кать бессимптомно.

Еще один шаг в разработке доступ­ных и точных методов амбулаторной регистрации ЭКГ был сделан груп­пой исследователей, создавших носи­мый кардиомонитор-анализатор с электронной памятью [Гусаров Г. В. и др., 1983, 1985]. Отличие этого устройства от существующих систем с магнитной записью состоит в том, что в нем обработка информации про­исходит одновременно с регистраци­ей биоэлектрических сигналов серд­ца, а результаты обработки и фраг­менты ЭКГ записываются в цифро­вую память без использования маг­нитной ленты и механических частей. Вывод накопленной за сутки инфор-, нации производится через несложное переходное устройство на электро­кардиограф за 1 мин [Тихоненко В. М., 1987]. Среди перспективных отечественных приборов, обеспечи­вающих слежение за сердечным рит­мом, необходимо упомянуть и микро-кардиомонитор, разработанный Г. И. Сидоренко и соавт. (1985).

Показания к суточной мониторной регистрации ЭКГ весьма широки: до­кументирование преходящих рециди­вирующих аритмий; определение час­тоты их возникновения; суждение о типе аритмии и о ее возможном меха­низме; сопоставление клинической симптоматики с электрокардиографи­ческой картиной; выявление связей между аритмиями и ишемическими изменениями на ЭКГ (смещение сег­ментов ST); проверка эффективности противоаритмических лекарственных препаратов; контроль за функцией имплантированных кардиостимулято-ров; эпидемиологические исследова-


ния нарушений сердечного ритма и проводимости в некоторых группах людей; оценка ритма сердца у лиц с повышенным риском внезапной смер­ти; подозрение на аритмии у беремен­ных женщин [Мазур Н. А., 1980; Га-силин В. С. и др., 1983; Сыркин А. Л., 1984; Вангели Р. С. и др., 1985; Сидо-ренко Г. И. и др., 1985; Добротвор-ская Т. Е. и др., 1989; Магоп В. el al., 1981; Loaldi A. et al., 1983; Gomes J., 1985].

На нескольких примерах покажем клиническое значение этого метода.

У больного с блокадой правой ножки и блокадой передневерхнего разветвления левой ножки интервал Р— R(Q) оставался нормальным, но при монпторной записи ЭКГ были выявлены эпизоды АВ блокады II степени типа II. Это послужило основа­нием для установки кардиостимулятора типа demand.

Женщину 35 лет с синдромом WPW периодически стали беспокоить голово­кружения, возникали обмороки. При су­точной мониторной регистрации ЭКГ вы­яснилось, что эти клинические расстрой­ства совпадают с моментом возникнове­ния пароксизмов ФП с большим числом желудочковых ответов. Это явилось пока­занием к хирургическому лечению синд­рома WPW.

У пожилого человека с удлинением ин-• ервала Q—Т отмечались кратковремен­ные приступы потери сознания. Остава­лось неясным, связаны ли они с наруше­ниями мозгового кровообращения, СА бло­кадой, АВ блокадой либо с желудочковой тахиаритмией. Ответ был получен при су­точной мониторной записи ЭКГ: приступы вызывались резкими урежониями синусо-пого ритма.

Телефонный метод регистрации и передачи ЭКГ.Его отличие от,других амбулаторных методов состоит в том, что ЭКГ у больного не записывают непосредственно па ленту или в циф­ровую память. С электродов, нало­женных в стандартных точках, элек­трические сигналы передаются через акустическую приставку, соединен­ную с микрофоном телефонной труб­ки. Принятые по телефону акустиче­ские сртгналы вновь преобразуются в электрические с помощью специаль­ного устройства, находящегося в ди­станционном диагностическом цент­ре. Врач у постели больного или сам больной (аутотрансляция) немедлен-


но получает по телефону нужные сведения об ЭКГ, а также советы ле­чебного характера [Халфен Э. Ш.,

1980. 1989; Чирейкин Л. В. и др.,

1981. 1986; Алмазов В. А., Чирейкин Л. В., 1985; Захаров В. Н. и др., 1985; Фетисова Э. В., 1987].

Существует возможность передачи ЭКГ (биоэлектрических сигналов) на расстоянии посредством радио- или спутниковой (космической) связи; их объединяют под названием телеэлек­трокардиографии.

Проба с физической нагрузкой. В клинической электрокардиографии часто применяют различные пробы, которые дают возможность судить об изменениях сердечного ритма в усло­виях, когда к сердцу предъявляются повышенные требования либо изме­няются направленность и интенсив­ность воздействия на сердце вегета­тивных нервов. Мы имеем в виду фармакологические пробы (введение атропина сульфата, изопропилнорад-реналина, калия хлорида, дигиталиса н т. д.), которые рассматриваются ни­же, и пробу с физической нагрузкой. К ней прибегают в тех случаях, когда у больных только эпизодически с большими перерывами", появляются вызывающие симптоматику тахи-аритмии или блокады, которые не уда­ется уловить при суточной монитор-пой регистрации ЭКГ. Таким боль­ным показано электрофизиологичос-кое исследование (ЭФИ) с воспроиз­ведением аритмий, однако подобные исследования пе всегда можно осу­ществить. Свойственная нагрузкам стимуляция симпатической нервной ср!стемы способствует усилению ав­то матизма, появлению задержанных постдеполяризаций и при определен­ных условиях — возникновению re­entry. Дозированную нагрузочную велоэргометрическую (или другую) пробу лучше проводить при постоян­ной мопиторной регистрации ЭКГ. О том, что это обогащает диагности­ку, свидетельствует следующий при­мер: наджелудочковые экстрасисто­лы, вызванные физической нагруз­кой, были зарегистрированы у 4,8%

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.