Сделай Сам Свою Работу на 5

Основные физические величины и законы





Закон Ампера

,

где – сила, с которой магнитное поле действует на элемент длины проводника с током , вектор совпадает с направлением тока, – вектор магнитной индукции.

В скалярном виде

,

где – угол между векторами и .

Сила Лоренца

,

где – сила, действующая на заряд , движущийся в магнитном поле со скоростью (сила Лоренца).

В скалярном виде

,

где – угол между и .

Связь магнитной индукции и напряженности магнитного поля

где – магнитная постоянная, – магнитная проницаемость среды.

Закон Био-Савара-Лапласа

,

где – напряженность магнитного поля, создаваемого элементом длины проводника с током ; – радиус-вектор, приведенный от к точке, в которой определяется напряженность поля.

В скалярном виде

,

где – угол между векторами и .

Из закона Био-Савара-Лапласа следуют формулы, определяющие:

1). напряженность магнитного поля в центре кругового проводника радиуса с током

;

2). Напряженность магнитного поля, создаваемого отрезком прямолинейного проводника с током, в точке, отстоящей от проводника на расстоянии , и определяемой углами и между направлением тока и радиус-векторами из начала и конца отрезка в эту точку



;

3). Напряженность магнитного поля, создаваемого «бесконечно длинным» ( ) проводником с током на расстоянии от него

;

4). Напряженность магнитного поля внутри соленоида, имеющего витков, длину , много большую диаметра соленоида D

.

Поток вектора магнитной индукции (магнитный поток) через произвольную поверхность

,

где – угол между векторами и , – вектор нормали к площадке .

Поток вектора магнитной индукции через площадку в однородном ( ) магнитном поле соответственно

.

Закон электромагнитной индукции

,

где – э.д.с. индукции.

Э.д.с. самоиндукции

,

где – индуктивность контура

,

где – магнитный поток, создаваемый в контуре током .

Индуктивность соленоида (тороида)

,

где – число витков соленоида, – его длина, – площадь сечения.

Работа по перемещению проводника с током в магнитном поле

,

где – магнитный поток, пересеченный движущимся проводником.

Работа по перемещению замкнутого контура с током в магнитном поле



,

 

где – изменение магнитного потока, сцепленного с контуром.

Работа перемещения контура при неизменном токе в нем

,

где и – начальный и конечный магнитный потоки через контур.

Энергия магнитного поля, создаваемого током в замкнутом контуре, по которому течет ток

.

Объемная плотность энергии

.

Пример 1. В однородном магнитном поле с индукцией движется протон. Траектория его движения представляет собой винтовую линию с радиусом и шагом . Определить кинетическую энергию протона.

Дано: ; ; ;

; .

Найти: .

 

 

Рисунок 18.

Решение. Кинетическая энергия протона (при )

. (1.1)

– скорость света.

Заряженная частица движется в магнитном поле по винтовой линии в случае, когда ее скорость составляет с направлением вектора индукции угол , не равный 900. В таком случае частица движется по окружности в плоскости, перпендикулярной линиям индукции со значением составляющей скорости и одновременно поступательно вдоль силовых линий со значением составляющей скорости .

Как видно из рисунка 4.1 ; .

. (1.2)

Согласно второму закону Ньютона

.

Сила Лоренца перпендикулярна вектору скорости и сообщает протону нормальное ускорение .

Отсюда

, (1.3)

где – радиус окружности.

Шаг винтовой линии – это расстояние, пройденное протоном со скоростью вдоль силовой линии за время, равное периоду его вращения по окружности

.

Так как , то .

Отсюда

. (1.4)

Подставляя формулы (1.3) и (1.4) в уравнение (1.2), находим

.

Отсюда .

Как видно, .

Таким образом, для кинетической энергии протона по формуле (1.1) получаем значение

.

Пример 2.По проводу, согнутому в виде квадрата со стороной , течет ток силой . Найти магнитную индукцию в точке пересечения диагоналей квадрата.



Дано: ;

.

Найти: .

 

 

Рисунок 19.

Решение.Расположим квадратный виток в плоскости чертежа (рисунок 19). Согласно принципу суперпозиции магнитных полей магнитная индукция поля квадратного витка будет равна геометрической сумме магнитных индукций полей, создаваемых каждой стороной квадрата в отдельности:

. (2.1)

В точке Опересечения диагоналей квадрата все векторы индукции будут направлены перпендикулярно плоскости витка «к нам». Кроме того, из соображений симметрии следует, что абсолютные значения этих векторов одинаковы: В1 = В2 = Вз = В4. Это позволяет векторное равенство (2.1) заменить скалярным равенством

(2.2)

Магнитная индукция В1 поля, создаваемого отрезком прямолинейного провода с током, выражается формулой

. (2.3)

Учитывая, что и (рисунок 4.2), формулу (2.3) можно переписать в виде

.

Подставив это выражение В1 в формулу (2.2), найдем

.

Заметим, что и (так как ), получим

.

Подставим в эту формулу числовые значения физических величин и произведем вычисления:

.

Пример 3.В однородном магнитном поле с индукцией равномерно вращается катушка, содержащая витков, с частотой . Площадь поперечного сечения катушки 100 см2. Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определить максимальную э.д.с. индукции вращающейся катушки.

Дано: ; ; ; .

Найти: .

Решение. Согласно закону электромагнитной индукции

.

суммарный магнитный поток через все витки катушки (потокосцепление катушки)

,

где – число витков, – магнитный поток, пронизывающий каждый отдельный виток.

При произвольном расположении катушки относительно магнитного поля

.

Учитывая, что круговая частота , получим

.

Тогда

.

при .

Поэтому .

Подставляя численные значения величин получим

.

Пример 4.Виток, в котором поддерживается постоянная сила тока

, установился в однородном магнитном поле ( ). Диаметр витка . Какую работу Анужно совершить, чтобы повернуть виток относительно оси, совпадающей с диаметром, на угол ?

Дано: ; ; ; ; .

Найти: .

Решение. Работу поворота витка с постоянным током определим по формуле

. (4.1)

магнитный поток через виток в произвольном положении

,

где – угол между нормалью к плоскости витка и направлением вектора магнитной индукции .

В начальном (равновесном) положении нормаль совпадает с направлением вектора , то есть .

После поворота, по условию задачи, .

Таким образом

;

.

Подставляя эти выражении в уравнение (4.1), получим

.

И так как площадь витка равна , то окончательно имеем

.

Подставляя численные значения величин, получим

.

Работа внешних сил против сил магнитного поля.

Пример 5.Соленоид имеет длину и сечение . При некоторой силе тока, протекающего по обмотке, в соленоиде создается магнитный поток . Чему равна энергия W магнитного поля соленоида? Сердечник выполнен из немагнитного материала, и магнитное поле во всем объеме однородно.

Дано: ; ; ;

; .

Найти: .

Решение. Энергию однородного магнитного поля определим по формуле

, (5.1)

где – объем соленоида:

(5.2)

– объемная плотность энергии магнитного поля

. (5.3)

Магнитный поток через каждый виток соленоида

,

так как нормаль к плоскости витков совпадает по направлению с вектором и, соответственно, и .

Отсюда

.

Подставляя это выражение в уравнение (5.3), получим

. (5.3)

С учетом формул (5.2) и (5.3) уравнение (5.1) принимает вид

.

Подставляя численные значения величин, получаем

.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.