Сделай Сам Свою Работу на 5

Токи при замыкании и размыкании цепи (экстратоки).





При любом изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, после чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, по правилу Ленца, всегда имеют такое направление, чтобы оказывать сопротивление изменениям тока в цепи, т. е. имеет направление, противоположное току, создаваемому источником. При выключении источника тока экстратоки так же направлены, как и ослабевающий ток. Значит, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи. Исследуем процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ , катушку индуктивностью L и резистор сопротивлением R . Под действием внешней э. д. с. в цепи течет постоянный ток I0= ξ/R. В момент времени t=0 отключим источник тока. Ток в катушке индуктивностью L начнет убывать, что приведет к возникновению э.д.с. самоиндукции ξs = -L(dI/dt) оказывающей препятствие, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи задается законом Ома I= ξs/R, или IR=-LdI/dt(1) Разделив в формуле (1) переменные, получим (dI/I) = -(R/L)dt . Интегрируя эту формулу по I (от I0 до I) и t (от 0 до t), найдем ln (I/I0) = –Rt/L, или I=I0e-t(2) где τ = L/R — постоянная, которая называется временем релаксации. Из (2) видно, что τ есть время, в течение которого сила тока уменьшается в е раз. Значит, в процессе отключения источника тока сила тока уменьшается по экспоненциальному закону (2) и задается кривой 1 на рис. 1. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше τ и, значит, тем медленнее убывает ток в цепи при ее размыкании.



При замыкании цепи помимо внешней э. д. с. ξ возникает э. д. с. самоиндукции ξs = -L(dI/dt) оказывающая препятствие, согласно правилу Ленца, возрастанию тока. По закону Ома, IR = ξ+ξs или IR=ξ - LdI/dt

Зададим переменную u = (IR - ξ) преобразуем эту формулу как du/u=-dt/τ где τ — время релаксации. В момент замыкания (t=0) сила тока I = 0 и u = –ξ . Значит, интегрируя по u и (от –ξ до IR–ξ) и t (от 0 до t), найдем ln[(IR–ξ)]/(–ξ) = -t/τ, или I=I0(1-e-t)(3) где I0=ξ/R — установившийся ток (при t→∞)

Значит, в процессе включения источника тока увеличение силы тока в цепи определяется функцией (3) и кривой 2 на рис. 1. Сила тока увеличивается от начального значения I=0 и асимптотически стремится к установившемуся значению I0=ξ/R . При этом, скорость нарастания тока задается тем же временем релаксации τ = L/R, что и убывание тока. Установление тока осуществляется тем быстрее, чем меньше индуктивность цепи и чем больше ее сопротивление. Оценим значение э.д.с. самоиндукции ξs , которая возникает при мгновенном нарастании сопротивления цепи постоянного тока от R0 до R. Допустим, что мы размыкаем контур, когда в нем течет установившийся ток I0=ξ/R . При размыкании цепи ток будет менеться по формуле (2). Подставив в нее формулу для I0 и τ, найдем I=ξe-Rt/L/R0. Э.д.с. самоиндукции ξ=-L(dI/dt)=Re-Rt/L/R0 т.е. при значительном возрастании сопротивления цепи (R/R0>>1), которая обладает большой индуктивностью, э.д.с. самоиндукции может во много раз быть больше э.д.с. источника тока, включенного в цепь. Значит, необходимо учитывать, что контур, который содержит индуктивность, нельзя резко размыкать, так как при этом (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и поломке измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции больших значений не достигнет.



Энергия и плотность энергии магнитного поля.

Проводник, c протекающим по нему электрическим ток, всегда окружен магнитным полем, причем магнитное поле исчезает и появляется вместе с исчезновением и появлением тока. Магнитное поле, подобно электрическому, является носителем энергии. Логично предположить, что энергия магнитного поля совпадает с работой, затрачиваемой током на создание этого поля. Рассмотрим контур индуктивностью L, по которому протекает ток I. С этим контуром сцеплен магнитный поток Ф=LI, поскольку индуктивность контура неизменна, то при изменении тока на dI магнитный поток изменяется на dФ=LdI. Но для изменения магнитного потока на величину dФ следует совершить работу dА=IdФ=LIdI. Тогда работа по созданию магнитного потока Ф равна A=∫0ILIdI=LI2/2. Значит, энергия магнитного поля, которое связано с контуром, W= LI2/2.(1) Энергию магнитного поля можно рассматривать как функцию величин, которые характеризуют это поле в окружающем пространстве. Для этого рассмотрим частный случай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (1) формулу индуктивности соленоида, найдем W=μ0μN2I2S/2l. Так как I=Bl/(μ0μN) и В=μ0μH , то W=B2V/2μ0μ=BHV/2(2), где Sl = V — объем соленоида



Магнитное поле внутри соленоида однородно и сосредоточено внутри него, поэтому энергия (2) заключена в объеме соленоида и имеет с ним однородное распределение с постоянной объемной плотностью ω=W/V=B2/2μ0μ= μ0μH2/2=BH/2(3). Формула (3) для объемной плотности энергии магнитного поля имеет вид, аналогичный выражению для объемной плотности энергии электростатического поля, с тем отличием, что электрические величины заменены в нем магнитными. Формула (3) выводилась для однородного поля, но она верна и для неоднородных полей. Формула (3) справедлива только для сред, для которых линейная зависимость В от Н , т.е. оно относится только к пара- и диамагнетикам.

Общая характеристика теории Максвелла для электромагнитного поля. Вихревое электрическое поле, первое уравнение Максвелла. Ток смещения, второе уравнение Максвелла. Полная система уравнений Максвелла. Относительность электрических и магнитных полей.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.