Сделай Сам Свою Работу на 5

Линейные операции над векторами.





А.Д. Ходалевич

Р.В. Бородич

В.Н. Рыжик

«Аналитическая геометрия »

Тексты лекций

Гомель, 2004

УДК 514 (078)

ББК 22.151 Я73

Х 69

 

Рецензенты: Семенчук В.Н. – профессор, доктор физико-математических наук кафедра высшей математики учреждения образования «Гомельский государственный университет имени Франциска Скорины».

 

 

Рекомендован к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины» 24 марта 2004 года, протокол № 7

 

Ходалевич А.Д.

Х 69 Аналитическая геометрия: Тексты лекций. /А.Д.Ходалевич,

Р.В.Бородич, В.Н. Рыжик. − Гомель: УО «ГГУ им. Ф.Скорины»; 2004 − 65с.

 

 

Дается краткое изложение курса лекций по аналитической геометрии для студентов, обучающихся по специальности «Прикладная математика»

 

УДК 514 (078)

ББК 22.151 Я73

Х 69

 

 

© А.Д. Ходалевич, Р.В. Бородич, В.Н. Рыжик, 2004

© Учреждение образования «Гомельский государственный университет имени Франциска Скорины», 2004

 


СОДЕРЖАНИЕ

 

 

1. Векторы и координаты………………………………….…4

2. Прямая на плоскости………………………………………20



3. Плоскость…………………………………………………...25

4. Прямая в пространстве. Взаимное расположение

прямой и плоскости в пространстве…………………………29

5. Кривые второго порядка…………………………………...33

6. Поверхности второго порядка……………………………..56

 

Литература………………………………………………….….64

 

 


Аналитическая геометрия - это раздел математики, в котором геометрические объекты изучаются с помощью алгебраических мето­дов, в основе которых лежит понятие координат.

ВЕКТОРЫ И КООРДИНАТЫ

Понятие вектора

Пусть А – произвольное непустое множество. Декартовым кваратом А называется множество

A2 =

Бинарным отношением на А называется любое подмножество множества A2.

Отношением эквивалентности на А называется такое бинарное отношение на А, которое удовлетворяет следующим условиям:

1) (рефлексивность);

2) если ( ,b) то (b, ) (симметричность);

3) если ( ,b) то ( ,c) (транзитивность).

 

Теорема.Любое отношение эквивалентности на множестве А определяет разбиение этого множества на попарно непересекающиеся классы (классы эквивалентности). Обратно, любое разбиение множества А на попарно непересекающиеся классы определяет отношение эквивалентности на А.



 

Направленный отрезок – отрезок, у которого указано, какая точка является началом, а какая концом. Обозначается .

Пусть заданы направленные отрезки и , не лежащие на двух различных параллельных прямых, и плоскость , проходящая через точки В и D. Тогда плоскость разбивает все пространство на два полупространства. Если при этом точки B и D лежат в одном полупространстве, то говорят, что направленные отрезки и одинаково направлены (обозначается ). В противном случае, они называются противоположно направленными (обозначается ).

Если направленные отрезки и лежат на одной прямой, то они одинаково (противоположно) направлены, если существует такой третий направленный отрезок , который одинаково направлен с каждым из направленных отрезков и (противоположно направлен в точности с одним из направленных отрезков или ).

Абсолютной величиной или модулем (длиной) направленного отрезка называется длина этого направленного отрезка и обозначается | |.

Два направленных отрезка и называются равными, если и , при этом пишут = ,

 

Теорема. Отношение равенства направленных отрезков является отношением эквивалентности.

 

Тогда вектором называется абстрактный объект, совпадающий с некоторым классом эквивалентности.

Таким образом, каждый из равных друг другу направленных отрезков считается представлением (изображением) данного вектора, а неравные направленные отрезки считаются представлением разных векторов. Поэтому в дальнейшем вектор изображается точно так, как и соответствующий ему направленный отрезок.



 

Векторы и называются коллинеарными, если образующие их направленные отрезки параллельны одной и той же прямой (обозначается || ).

Три и более векторов называются компланарными, если образующие их направленные отрезки параллельны некоторой плоскости.

Нулевым вектором называется вектор, начало которого совпадает с его концом (обозначается ). Направление нулевого вектора не определено.

 

Линейные операции над векторами.

 

Определение. Суммой + векторов и называется вектор, проведенный из начала к концу , если конец и начало совпадают. Приведенное определение сложения векторов называется правилом треугольника. Векторы и можно складывать, пользуясь правилом параллелограмма.

Если имеется n векторов , то их сумма определяется как вектор .

Определение. Разностью векторов и называется такой вектор = - , что выполняется равенство + = .

Легко показать, что для любого вектора , существует такой единственный вектор , называемый противоположным вектору

что + = . Вектор, противоположный вектору , будем обозначать – .

Определение. Произведением вектора на число λ (λ 0) называется вектор , удовлетворяющий следующим условиям:

1) векторы и одинаково направлены, если λ>0, и противоположно направлены, если λ<0;

2) | |=|λ|| |.

 

По определению, произведение произвольного вектора на число 0 есть нулевой вектор, т.е. 0 = .

Введенные операции сложения векторов и умножение вектора на число называются линейными. Они обладают следующими свойствами:

1) сложение векторов коммутативно:

+ = + , " , ;

2) сложение векторов ассоциативно:

( + )+ = +( + ), " , , ;

3) + = , " ;

4) +(- )=0, " ;

5) умножение вектора на число ассоциативно:

α (β ) = (α β) , " " α, β Î R;

6) 1 = , " ;

7) умножение вектора на число дистрибутивно по отношению к

сложению чисел:

(α+β) , " , " α, β Î R;

8) умножение вектора на число дистрибутивно по отношению к сложению векторов:

α( + )=α , " , , " α Î R;

Множество всех векторов пространства (плоскости), удовлетворяющих свойствам 1) – 8), называется линейным, или векторным пространством, и обозначается ( ).

 

Теорема (необходимое и достатаочное условие коллинеарности двух векторов). Для того чтобы векторы и были коллинеарны, необходимо и достаточно, чтобы существовало число λ, удовлетворяющее условию:

= λ .

 

Проекции.

 

Назовем осью прямую, на которой указано направление, которое будем называть положительным.

 

Пусть l - некоторая ось, α - плоскость, непараллельная оси l. Через произвольную точку А пространства проведем плоскость α'||α и обозначим точку пересечения плоскости α' c осью l через А1. Тогда точка А1 называется проекцией точки А на ось l относительно плоскости α. В частности, если α l, то проекция называется прямоугольной, или ортогональной.

Пусть теперь задан вектор . Возьмем проекции А1 и В1 точек А и В на ось l относительно плоскости α.

Тогда вектор называется проекциейвектора на ось l относительно плоскости α. Величиной проекции вектора на ось l относительно плоскости α называется число, равное:

а) | |, если направление вектора совпадает с направлением оси l;

б) - | |, если направление противоположно направлено оси l.

Обычно из контекста ясно о проекции относительно какой плоскости идет речь. Поэтому величину проекции вектора на ось l будем обозначать Прl , а для ортогональной проекции использовать обозначение прl .

Пусть α - некоторая плоскость и l – прямая, такая, что l не параллельна α. Через произвольную точку А пространства проведем прямую l1 || l и обозначим точку пересечения прямой l1 с плоскостью α через А1. Точка А1 называется проекциейточки А наплоскость α относительнопрямой l.

Если прямая l α, то проекция называется прямоугольной, или ортогональной.

Определение. Углом между двумя векторами, или между осями, или между вектором и осью называется наименьший угол α, на который надо повернуть один из векторов или одну из осей до совпадения по направлению с другим вектором или осью.

Из определения следует, что 0 α π. Угол между векторами или между осями, или между вектором и осью будем обозначать соответственно: ( ), ( ), ( ).

 

Теорема. Проекция вектора на ось обладает следуицики свойствами:

1) ;

2)

3) .

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.