Угол между векторами и значение скалярного произведения
В Примере 1 скалярное произведение получилось положительным, а в Примере 2 – отрицательным. Выясним, от чего зависит знак скалярного произведения. Смотрим на нашу формулу: . Длины ненулевых векторов всегда положительны: , поэтому знак может зависеть только от значения косинуса.
Примечание:Для более качественного понимания нижеприведенной информации лучше изучить график косинуса в методичкеГрафики и свойства функции. Посмотрите, как ведёт себя косинус на отрезке .
Как уже отмечалось, угол между векторами может изменяться в пределах , и при этом возможны следующие случаи:
1) Если угол между векторами острый: (от 0 до 90 градусов), то , и скалярное произведение будет положительным: . Особый случай: если векторы сонаправлены, то угол между ними считается нулевым , и скалярное произведение также будет положительным. Поскольку , то формула упрощается: .
2) Если угол между векторами тупой: (от 90 до 180 градусов), то , и, соответственно, скалярное произведение отрицательно: . Особый случай: если векторы направлены противоположно, то угол между ними считаетсяразвёрнутым: (180 градусов). Скалярное произведение тоже отрицательно, так как
Справедливы и обратные утверждения:
1) Если , то угол между данными векторами острый. Как вариант, векторы сонаправлены.
2) Если , то угол между данными векторами тупой. Как вариант, векторы направлены противоположно.
Но особый интерес представляет третий случай:
3) Если угол между векторами прямой: (90 градусов), то и скалярное произведение равно нулю: . Обратное тоже верно: если , то . Компактно утверждение формулируется так: Скалярное произведение двух векторов равно нулю тогда и только тогда, когда данные векторы ортогональны. Короткая математическая запись:
! Примечание:Рекомендую запомнить математический значок , в математике его обычно читают: «тогда и только тогда», «в том и только в том случае». Как видите, стрелки направлены в обе стороны – «из этого следует это, и обратно – из того, следует это». В чём, кстати, отличие от одностороннего значка следования ? Значок утверждает, только то, что «из этого следует это», и не факт, что обратное справедливо. Например: , но не каждый зверь является пантерой, поэтому в данном случае нельзя использовать значок . В то же время, вместо значка можно использовать односторонний значок. Например, решая задачу, мы выяснили, что и сделали вывод, что векторы ортогональны: – такая запись будет корректной, и даже более уместной, чем .
Третий случай имеет большую практическую значимость, поскольку позволяет проверить, ортогональны векторы или нет. Данную задачу мы решим во втором разделе урока.
Скалярный квадрат вектора Свойства скалярного произведения
Вернёмся к ситуации, когда два вектора сонаправлены. В этом случае угол между ними равен нулю, , и формула скалярного произведения принимает вид: .
А что будет, если вектор умножить на самого себя? Понятно, что вектор сонаправлен сам с собой, поэтому пользуемся вышеуказанной упрощенной формулой:
Или:
Число называется скалярным квадратом вектора , и обозначатся как .
Таким образом,скалярный квадрат вектора равен квадрату длины данного вектора:
Из данного равенства можно получить формулу для вычисления длины вектора:
Пока она кажется малопонятной, но задачи урока всё расставят на свои места. Для решения задач нам также потребуются свойства скалярного произведения.
Для произвольных векторов и любого числа справедливы следующие свойства:
1) – переместительный или коммутативный закон скалярного произведения.
2) – распределительный или дистрибутивный закон скалярного произведения. Попросту, можно раскрывать скобки.
3) – сочетательный или ассоциативный закон скалярного произведения. Константу можно вынести из скалярного произведения.
Зачастую, всевозможные свойства (которые ещё и доказывать надо!) воспринимаются студентами как ненужный хлам, который лишь необходимо вызубрить и сразу после экзамена благополучно забыть. Казалось бы, чего тут важного, все и так с первого класса знают, что от перестановки множителей произведение не меняется: . Должен предостеречь, в высшей математике с подобным подходом легко наломать дров. Так, например, переместительное свойство не является справедливым для алгебраических матриц. Неверно оно и для векторного произведения векторов. Поэтому, в любые свойства, которые вам встретятся в курсе высшей математики, как минимум, лучше вникать, чтобы понять, что можно делать, а чего нельзя.
Пример 3
Найти скалярное произведение векторов и , если известно, что .
Решение:Сначала проясним ситуацию с вектором . Что это вообще такое? Сумма векторов и представляет собой вполне определенный вектор, который и обозначен через . Геометрическую интерпретацию действий с векторами можно найти в статье
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|