Вспомогательные алгоритмы
Вспомогательный алгоритм является аналогом языковой подпрограммы. Он имеет имя и может иметь параметры, которые называются формальными параметрами. Имя служит для того. чтобы отличить его от других алгоритмов, а формальные параметры, которые напоминают переменные математических функций, выполняют роль входных и выходных параметров.
Формальные параметры должны быть выбраны таким образом, чтобы ими был исчерпан весь набор необходимых входных и выходных величин. Нередко один и тот же параметр может оказаться входным и выходным одновременно. Например, на вход такого алгоритма может быть подан массив для обработки, а на выходе процедуры он может предстать в измененном виде как выходной параметр.
Среди вспомогательных алгоритмов различают процедуры и функции.
Первый блок схемы рис. 11 в отличие от ранее рассмотренных примеров, где этот блок имел наименование “Начало”, включает имя процедуры Warn и один формальный параметр i. С помощью этого имени в алгоритме рис. 12 выполняется обращение именно к этой процедуре.
Из схемы видно, что если на вход процедуры Warn подать i = 0, то она в блоке 3 выдаст сообщение "Введите данные". При любом другом i будет выведено сообщение "Конец расчетов". Этим исчерпываются возможности процедура Warn.
Рис. 11. Процедура Warn
На рис. 12 дана схема головного алгоритма ( первый блок имеет наименование "Начало" ). Этот алгоритм в блоках 2 и 8 обращается к процедуре Warn.
Опишем последовательность и механизм обработки данных, которые предписаны алгоритмами рис. 11 и 12.
Выполнение алгоритмических действий всегда начинаются с головного алгоритма. Поэтому сначала будет выполнен блок 1 схемы рис. 12. Далее в блоке 2 головной алгоритм выполняет обращение к процедуре Warn при конкретном значении ее аргумента (0). Это конкретное значение называется фактическим параметром процедуры.
Теперь управление временно переходит в алгоритм рис. 11 процедуры Warn. Здесь и далее по всей процедуре Warn формальный параметр i заменяется на фактический параметр 0 (нуль) всюду, где он встречается.
Далее обрабатывается блок 2 процедуры, где с учетом сказанного проверяется условие 0 = 0. Результатом проверки станет перевод управления к блоку 3, в котором выводится сообщение "Введите данные". На этом процедура заканчивается и управление вновь передается в головной алгоритм к блоку 3.
Далее в блоках 3-5 алгоритма рис. 12 выполняются уже понятные действия по вводу, суммированию и выводу переменных. Затем управление передается в блок б, который содержит новое обращение к процедуре Warn с фактическим параметром 1.
Рис. 12. Головной алгоритм
Снова управление переключается на схему рис. 11, где вместо формального параметра i всюду записывается фактический параметр – константа 1. Поскольку в блоке 2 условие 1 = 0 не выполнится, то будет выполнен блок 4 и алгоритм выведет сообщение "Конец расчетов". После этого управление возвращается в головной алгоритм к блоку 7, где и будет окончательно завершен алгоритмический процесс.
Внешне такой процесс может выглядеть примерно так. На экран выводится сообщение "Введите данные" и компьютер переходит в режим ожидания ввода двух констант с клавиатуры. Затем после их ввода на экране появляется три константы и надпись "Конец работы". На первый взгляд может показаться, что процедуры лишь усложняют решение задачи. Действительно, рассмотренную здесь задачу проще решить одним алгоритмом, не прибегая к составление процедуры. Однако при составлении алгоритма решения сложной задачи очень быстро становится ясно, что без использования процедур обойтись просто невозможно. На практике при решением серьезных алгоритмических задач часто одному программисту не под силу выполнить весь объем работ. Поэтому над ее решением работает обычно коллектив программистов под руководством координатора. Образно говоря, координатор здесь работает как головной алгоритм, а его программисты как процедуры. При этом каждый программист (часто независимо от других) получает от координатора задание по составление процедур определенного назначения. В результате такой организации работы задача получает разрешение.
Декомпозиция алгоритма
Под декомпозицией алгоритма понимают разложение его o6щeй алгоритмической схемы на вспомогательные алгоритмы (процедуры и функции) и головной алгоритм. Напомним, такая задача ставится перед студентом при выполнении курсовой или контрольной работы. Одним из условий, которое должно быть обязательно выполнено, является наличие в работе хотя бы одной процедуры или функции (кроме того, работа должна содержать текст описания всех процедур и головного алгоритма).
Метод, при помощи которого обычно выполняется декомпозиция, достаточно прост. Сначала вычленяют основные этапы предстоящей работы. Наиболее сложные этапы оформляет в процедуры или функции верхнего уровня. Затем, если необходимо, такие этапы делят на этапы более низкого уровня. Наиболее сложные из них также оформляют процедурами или функциями и т. д. Следуя методу "от сложного к простому", в конечном итоге достигают решения поставленной задачи. Приведем пример декомпозиции для решения задачи сортировки массива. Эта задача была решена ранее в разд. 8 (рис. 9) без использования вспомогательных алгоритмов. Решение задачи декомпозиции состоит из трех основных этапов: 1) ввода данных, 2) сортировки массива и 3) вывода отсортированного массива. Первый и третий этапы вследствие их простоты не нуждаются в дальнейшей декомпозиции, поэтому выполняются в головном алгоритме. Второй этап представляет достаточно сложный и самостоятельный фрагмент вычислений, поэтому его целесообразно выделить в отдельную процедуру, которой можно дать имя Sort.
Этап сортировки, в свои очередь, состоит из двух этапов: 1) установления необходимости сортировки и (N–1) – кратного прохода по массиву и 2) нахождения наименьшего элемента во фрагменте массива и перестановки этого элемента с начальным элементом фрагмента. Поскольку последний этап многократно повторяется при выполнении первого этапа, то его можно оформить в отдельную процедуру. Этой процедуре можно дать имя Tra (от английского transposition – перестановка). Блок-схемы головного алгоритма, процедуры Sort и процедуры Тrа показаны на рис. 13-15 соответственно.
Рис. 13. Головной алгоритм Рис. 14. Процедура Sort
Дадим краткое, описание взаимодействия этих алгоритмов в ходе решения задачи сортировки.
Выполнение начинается с головного алгоритма (рис. 13). В блоке 2 вводятся исходные данные, затем в блоке 3 выполняется сортировка массива. В блоке 4 отсортированный массив выводится и алгоритм заканчивает работу. Сортировка массива в блоке 3 головного алгоритма выполняется обращением к процедуре Sort, показанной на рис. 14. Переменные A и N являются фактическими параметрами, Переменные А и N, которые использованы в блок-схеме алгоритма Sort, является формальными параметрами.
При обращении к процедуре Sort на вход подаются параметры A и N. В результате в теле процедуры производится замена формального параметра R на фактический параметр A, аналогично формальный K заменяется на фактический N.
Далее в блоке 2 проверяется необходимость сортировки массива R. Затем, если такая необходимость будет установлена, в цикле 3-4 будет выполняется сортировка массива. При всяком значении счетчика цикла в его теле производится нахождение наименьшего элемента фрагмента и его перестановка с начальным элементом этого фрагмента. Эти операции выполняются отдельно с помощью процедуры Tra. Как видно из рис. 15, на вход процедуры Tra нужно подать имя массива (A), количество элементов (N) и номер элемента (i), которым начинается фрагмент. В теле процедуры в блоках 2-5 отыскивается наименьший элемент фрагмента (v) и его номер (k). Затем в блоке 6 выполняется вышеназванная перестановка элементов.
Таким образом, весь процесс управляется головным алгоритмом, который выполняет сортировку посредством обращения к вспомогательному алгоритму – процедуре Sort.
Рис. 15. Процедура Tra
Тот, реализуя решение своей задачи, в своя очередь несколько раз вымывает еще более простой вспомогательный алгоритм процедуру Tra. В результате такого взаимодействия достигается решение задачи в целом.
В заключение приведем пример алгоритма-функции. Она похожа на процедуру, но в отличие от последней должна в теле алгоритма еще содержать команду присваивания результата имени функции, т. к. результат после вычислений сохранится в переменной, представленной именем функции.
Рассмотрим задачу вычисления факториала числа N! = 1.2.3. . .N. Результатом будет одно число, поэтому лучше алгоритм оформить в виде функции.
Ее блок-схема показана на рис. 16. Переменная К используется для накопления произведения и, поскольку 0! = 1 и1! = 1, то в блоке 2 ей сразу присваивается значение 1. Далее, если N>1, то в цикле, образованном блоками 4-5, накапливается искомое произведение и помещается в переменную К. В блоке 6 имя Fact функции получает значение вычисленного произведения из ячейки К. Для процедур действия, размещенного в блоке 6, не может быть, а для функций оно должно быть обязательно, поскольку иначе значение функции на выходе окажется неопределенным.
Обращение к функции в других алгоритмах (головных, процедурах, функциях) производится по ее имени.
Рис. 16. Функция Fact
При этом оно может входить в состав выражений. В качестве фактических параметров могут быть использованы как переменные, константы, так и целые выражения. Важно только, чтобы фактический параметр был совместим по типу с формальным, который содержится в заголовке описания алгоритма.
Пример использования функции Fact показан на рис. 17. В операторе присваивания используется обращение к функции для N = 6. После передачи этого значения в алгоритм рис. 16 и вычислений внутри него результат будет сначала присвоен имени функции, т. е. переменной Fact, а затем в операторе присваивания - переменной L.
Рис. 17. Обращение к функции Fact
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|