Сделай Сам Свою Работу на 5

Константы, переменные и ячейки памяти

Предисловие

 

Данный материал представляет собой справочное руководство по составлении алгоритмов, которые являются необходимой составной частью контрольной и курсовой работы по дисциплине "Информатика".

Изложенный материал не претендует на полноту охвата всех сторон проблемы алгоритмизации при решении задач, возникающих на практике. Однако его вполне достаточно для того, чтобы разобраться и выполнить ту часть названных работ, которая необходима для составления алгоритмов и их описания.

Опыт показывает, что трудности, возникающие при составлении алгоритмов имеют как общий характер, когда студент не может уяснить принцип работы алгоритма вообще, так и частный, когда непонятным оказывается отдельный фрагмент алгоритма.

В любом случае рекомендуется обратить внимание на следующее. Разбирая или составляя алгоритм, нужно мысленно представить некоторый автомат по обработке данных (компьютер), который будет выполнять действия, предписанные этим алгоритмом. Без такого представления невозможно понять сам алгоритм. Ниже, при разборе примеров, станет понятно, что такой мысленный автомат совсем несложен. Во всяком случае он несравнимо проще реального компьютера, хотя общие принципы их функционирования в основном одинаковы. Допустимо (например, при составлении описания) отождествлять работу такого автомата с работой самого алгоритма.

При изучении материала особенно первоначальном, следует подробно разобраться в каждом алгоритме, начиная с самого первого и самого простого. Начинать нужно с полного уяснения пяти самых простых и самых необходимых понятий: константа, переменная, ячейка памяти, запись константы в ячейку памяти, чтение константы из ячейки памяти. Не пренебрегайте этими советами, так как очень скоро убедитесь, что при разборе следующего алгоритма обязательно натолкнетесь не только на те же трудности, но присовокупите к ним новые. Более того, нередко полное понимание даже самого простого алгоритма дает намного больше пользы, чем поверхностное изучение десятка алгоритмов повышенной сложности.



Алгоритм и алгоритмизация

 

Алгоритм – это инструкция о том, в какой последовательности нужно выполнить действия при переработке исходного материала в требуемый результат. [последователь­ность точных предписаний, понятных исполните­лю (компьютеру, роботу и пр.), совершить последо­вательность действий, направленных на достиже­ние конкретного результата.]

Наряду с понятием алгоритма используют термин алгоритмизация, под которой понимают совокупность приемов и способов составления алгоритмов для решения алгоритмических задач.

Часто алгоритм используется не как инструкция для автомата, а как схема алгоритмического решения задачи. Это позволяет оценить эффективность предлагаемого способа решения, его результативность, исправить возможные ошибки, сравнить его еще до применения на компьютере с другими алгоритмами решения этой же задачи. Наконец, алгоритм является основой для составления программы, которую пишет программист на каком-либо языке программирования с тем, чтобы реализовать процесс обработки данных на компьютере.

Неотъемлемым свойством алгоритма является его результативность, то есть алгоритмическая инструкция лишь тогда может быть названа алгоритмом, когда при любом сочетании исходных данных она гарантирует, что через конечное число шагов будет обязательно получен результат.

На практике получили известность два способа изображения алгоритмов:

в виде пошагового словесного описания;

в виде блок-схем.

Первый из этих способов получил значительно меньшее распространение из-за его многословности и отсутствия наглядности. Второй, напротив, оказался очень удобным средством изображения алгоритмов и получил широкое распространение в научной и учебной литературе. Именно этот способ будет использован ниже при составлении и описании алгоритмов.

Блок-схема и ее элементы

Блок-схема – это последовательность блоков, предписывающих выполнение определенных операций, и связей между этими блоками. Внутри блоков указывается информация об операциях, подлежащих выполнению. Конфигурация и размеры блоков, а также порядок графического оформления блок-схем регламентированы ГОСТ 19002-80 и ГОСТ 19003-80 "Схемы алгоритмов и программ".

В табл. 1 приведены наиболее часто используемые блоки, изображены элементы связей между ними и дано краткое пояснение к ним. Блоки и элементы связей называют элементами блок-схем.

Представленных в таблице элементов вполне достаточно для изображения алгоритмов, которые необходимы при выполнении студенческих работ.

При соединении блоков следует использовать только вертикальные и горизонтальные линии потоков.

Горизонтальные потоки, имеющие направление справа налево, и вертикальные потоки, имеющие направление снизу вверх, должны быть обязательно помечены стрелками.

Прочие потоки могут быть помечены или оставлены непомеченными.

Линии потоков должны быть параллельны линиям внешней рамки или границам листа

 

 

Таблица 1

Название Элемент Комментарий
Процесс Вычислительное действие или последовательность вычислительных действий
Решение Проверка условия
Модификация Заголовок цикла
Предопределенный процесс Обращение к процедуре
Документ Вывод данных, печать данных
Перфокарта Ввод данных
Ввод/Вывод Ввод/Вывод данных
Соединитель Разрыв линии потока
Начало, Конец Начало, конец, пуск, останов, вход и выход во вспомогательных алгоритмах
Комментарий Используется для размещения надписей
Горизонтальные и вертикальные потоки Линии связей между блоками, направление потоков
Слияние Слияние линий потоков
Межстраничный соединитель Нет

Расстояние между параллельными линиями потоков должно быть не менее 3 мм, между остальными элементами схемы – не менее 5 мм.

Горизонтальный и вертикальный размеры блока должны быть кратны 5 мм (делиться на 5 нацело). Отношение горизонтального и вертикального размеров блока b/а = 1.5 является основным. При ручном выполнении блока допустимо отношение b/а = 2.

Блоки "Начало", "Конец" и "Соединитель" имеют высоту а/2, т. е. вдвое меньше основной высоты блоков.

Для размещения блоков рекомендуется поле листа разбивать на горизонтальные и вертикальные (для разветвлявшихся схем) зоны.

Для удобства описания блок-схемы каждый ее блок следует пронумеровать. Удобно использовать сквозную нумерации блоков. Номер блока располагают в разрыве в левой верхней части рамки блока.

По характеру связей между блоками различают алгоритмы линейной, разветвляющейся и циклической структуры.

Примеры, пояснявшие изложенное, можно найти в блок-схемах алгоритмов, которые будут приведены ниже.

Константы, переменные и ячейки памяти

Для того чтобы ясно представить как "работает" алгоритм, опишем простейший автомат, который предназначен для выполнения операций, предписанных этим алгоритмом.

В состав такого автомата входят:

память, состоящая из отдельных ячеек;

считывающая/записывающая головка;

процессор, т. е. устройство, способное выполнять операции, в том числе математические, и отдавать головке указания читать данные из ячеек или записывать данные в ячейки памяти автомата.

Головка, получив указание от процессора, может записывать в ячейку или считывать из нее одну константу.

В простейшем случае константой является любое арифметическое число. Например, 12, 0.78, 0, –45.33 и т. д. ( Константами могут быть такие строки символов, структуры данных и др.).

Под простой переменной, или просто переменной будем понимать некоторую ячейку памяти, т. е. отдельное место для хранение одной константы. В отдельной ячейке за время работы алгоритма может побивать множество различных констант (отсюда название – переменная). Такими ячейками (электронными, магнитными, оптическими) снабжен реальный компьютер.

Переменные имеют буквенно-символьное обозначение. Например, 1, n, a, a1, b, H2 – переменные. Одновременно обозначение переменной является индексом ячейки, в которую будут записываться константы. Любая из таких констант называется значением переменной. Например, Z является переменной и адресом ячейки Z одновременно. С алгоритмической точки зрения понятия “переменная” и “адрес ячейки” памяти являются идентичными.

Запись вида Y = 5.5 следует понимать так: записать константу 5.5 в ячейку с адресом Y (если до этой операции в ячейку была записана константа, то она будет затерта, а на ее место будет помещена константа 5.5). Произносить эту запись следует так: “переменной Y присвоить значение 5.5”.

Запись вида L = M следует понимать так: прочитать константу, расположенную по адресу M и скопировать эту константу в ячейку с адресом L (при этом константа из ячейки M не удаляется, а остается такой, какой она была до чтения). Произносить эту запись нужно так: "переменной L присвоить значение переменной M (или просто: L присвоить M)".

Массивы

Другой разновидностью переменных являются так называемые индексированные переменные или массивы. Массив – это некоторая совокупность ячеек, объединенная одним обозначением (массивом может быть одна ячейка). Всякий массив обязательно имеет размерность. Массивы бывают одномерными, двумерными, трехмерными и т. д.

Одномерный массив – это последовательность ячеек, расположенных в одну линию. На рис. 1 приведен пример такого массива.

 

Массив имеет имя q. Для того чтобы можно было отличить одну ячейку массива от другой ячейки этого же массива, их нумеруют. Нумерация ячеек обычно начинается с 1. Номер ячейки массива называется его индексом, а константа в ячейке – элементом массива. Теперь становится возможной работа с отдельной ячейкой такого массива. Например, команда q7 = 8.2 означает, что в 7-ю ячейку массива q надлежит записать константу 8.2. Команда r41 = q2 + q5 означает, что нужно сложить константы, записанные во 2-ю и 5-ю ячейки массива q, и результат записать в 41-ю ячейку одномерного массива r. Эту же операцию можно описать другими словами: 41-му элементу массива r присвоить значение суммы 2-го и 5-го элементов массива q.

Двумерный массив по расположению ячеек напоминает математическую матрицу (рис. 2). Элемент такого массива характеризуется двумя индексами: первый показывает строку, в которой расположена ячейка, второй – ее столбец. Например, команда d2, 5 = 43 означает, что в ячейку, размещенную на пересечении 2-й строки и 5-го столбца двумерного массива d, нужно записать константу 43.

 

 

Аналогично устроена структура массивов трех- и большей размерности.

Линейные алгоритмы

Линейный алгоритм – это алгоритм, в котором блоки выполняются последовательно сверху вниз от начала до конца.

На рис. 3 приведен пример блок-схемы алгоритма вычисления периметра Р и площади S квадрата со стороной длины A.

 

Блок-схема алгоритма состоит из шести блоков. Выполнение алгоритма начинается с блока 1 "Начало". Этот блок символизирует включение автомата, настройку его на выполнение алгоритма и выделение памяти под все переменные, которые задействованы в алгоритме. В алгоритме рис. 3 таких переменных три: A, Р, S. Следовательно, под каждую из них алгоритмом будет выделено по одной ячейке памяти. На этом блок 1 будет отработан.

Как видно из рис.3, блок 1 связан вертикальной линией потока с блоком 2. Эта линия не имеет стрелки, указывавшей направление потока. Следовательно, этот поток направлен вниз. Таким образом, после выполнения блока 1 управление будет передано на блок 2. Блок 2 "Перфокарта" ( см. табл. 1) показывает, что переменной A следует присвоить значение. Это означает, что в ячейку, отведенную автоматом под эту переменную, нужно поместить константу. На реальной компьютере эта константа может быть введена самыми разными способами. Способ зависит от того, как запрограммирован данный фрагмент. Можно, например, потребовать ввод константы с клавиатура или получить его из заранее подготовленного файла. Возможно эта константа будет получена через внешние источники данных, например, от физической установки, подключенной к компьютеру.

 

Рис. 3. Линейный алгоритм

 

Для данного примера способ передачи константы не имеет значения, важно лишь то, что при выполнении блока 2 в ячейку с адресом А будет занесена конкретная константа. Пусть такой константой является число 5.

Далее управление по линии потока передается к блоку 3 "Процесс". В этом блоке при выполнении размещенной в ней команды число 4 умножается на константу, помещенную в ячейку А (т. е. 5), и результат (т. е. 20) присваивается переменной Р (т. е. константа 20 записывается в ячейку по адресу Р). После выполнения этих операций управление передается к блоку 4.

В блоке 4 аналогичным образом производится умножение значений переменной А и результат (константа 25) присваивается переменной S (в ячейку по адресу S будет занесена константа 25). После этого выполняется переход к блоку 5.

При выполнении команд блока 5 выводятся (например, на экран, бумагу, во внешний файл и т. д.) значения переменных А, Р, S, которые сохранились в соответствующих ячейках к этому моменту. Понятно, что для конкретного примера А = 5 будут выведена константы 5, 20, 25, т. е. длина сторона квадрата, его периметр и площадь. Далее управление передается последнему блоку 6.

В блоке б “Конец” производится освобождение ячеек памяти, которые были зарезервированы под переменные А, P, S, и алгоритм заканчивает работу.

Понятно, что при новом запуске этого же алгоритма можно получить совсем другие числа. Так, если в блоке 2 переменной А присвоить значение 20, то алгоритм выдаст в блоке 5 константы 20, 80, 400.

Детальное описание алгоритма рис. 3 приведено для того, чтобы показать, в какой последовательности автомат выполняет предписанные операции и как при этом меняется состояние памяти автомата, т. е. для того, чтобы объяснить суть происходящих в автомате процессов. Из сказанного нужно уяснить, что автомат выполняет предписанную ему работу шаг за шагом. Всякий шаг обрабатывается процессором. Помимо вычислений процессор при необходимости отдает команды считывавшей/записывавшей головке, что и куда записывать, откуда читать. Конечный результат следует искать в ячейках памяти, каждая из которых до окончания алгоритма имеет известный адрес и хранит записанную в нее константу.

При выполнении контрольной или курсовой работы нет нужды давать столь подробное описание алгоритма. Тем не менее, описание должно быть выполнено с той степенью полноты, которая позволяет дать ясное представление о всех сторонах и особенностях алгоритмического процесса.



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.