Сделай Сам Свою Работу на 5

Социальная деятельность и социальные показатели 11 глава





Теперь можно определить величину предельной ошибки (см. табл. 16):

или 0,9%

Таким образом, доверительные границы для доли неинформиро­ванных в генеральной совокупности равны 0,02 ± 0,009, или от 1,1 до 2,9%.

Приведем иллюстративный пример определения объема простой повторной случайной выборки. Как видно из формул, чтобы опре­делить объем (см. табл. 16), дл его оценки необходимо знать дис­персии генеральной средней или хотя бы ее оценки.

Для применения соответствующей формулы необходимо оцепить значение дисперсии, что можно сделать (при отсутствии информа­ции о ней и о размахе значений признака в генеральной совокупно­сти) путем проведения одной - двух пилотажных (пробных) выборок.

Допустим, что в результате пилотажа выборочная оценка дис­персии равна 12,24. Определим, каким должен быть объем выборки, чтобы с вероятностью 0,95 предельное отклонение выборочной сред­ней от генеральной не превышало одного экземпляра газет. При этих условиях получаем численность планируемой выборки

.

Таким образом, объем выборки должен составлять 24 человека.

3. Систематическая и серийная выборки

Систематический отбор. В Социологических исследованиях иногда применяется несколько упрощенный вариант простого случайного отбора, который носит название систематического. Основа выборки для него характеризуется теми же требованиями, что и для Простого случайного отбора. Иными словами, основу выборки составляют раз­личные алфавитные списки, картотеки учреждений, домовые книги и т. п. При систематическом отборе выбор единиц наблюдения осу­ществляется через один и тот же интервал k из исходного списка. Например, при k = 20 выбирается 3, 23, 43, 63 и т. д. единиц списка.



Таким образом, элементы выборочной совокупности однозначно определяются при систематическом отборе номером первого элемен­та (тройки в нашем примере) и величиной интервала .

В одной из схем систематического отбора в качестве первого элемента выбирается средний элемент списка или стоящий рядом с ним. Так, если список генеральной совокупности пронумерован от 1 до N, то номер первого элемента может быть определен по формулам , если N — нечетное и N/2, если N — четное число.



Более распространен выбор первой единицы отбора случайным об­разом (например, по таблице случайных чисел).

Величина А зависит от характера поставленной проблемы, от разброса значений исследуемой характеристики генеральной сово­купности.

Если решен вопрос об объеме планируемой выборки, то число определяется в зависимости от объема генеральной совокупности и объема выборки (n).

Если N — кратное числа n, то интервал определяется по формуле . Если N некратно n, то реальный объем выборки и планируемый объем при различных способах вычисления числа k связаны следующими соотношениями:

если , то

если , то

Здесь [ ] означает целую часть числа.

Поясним сказанное на примере: пусть N = 19 и n = 5, чему равно k? Тогда k равно либо 3, либо 4.

При k = 3 в выборку попадает больше пяти элементов в дан­ном случае 6 или 7. При k = 4 в выборку попадут пять или четыре элемента.

Расчет характеристик систематической выборки. В связи с тем что систематическая выборка определяется как разновидность про­стого случайного отбора, ее характеристики рассчитываются с по­мощью соответствующих формул табл. 16.

В примере с подписчиками газет и журналов (см. табл. ,15) в систематическую выборку объемом 5 единиц попали номера респон­дентов 10, 20, 30, 40, 50, для которых соответствующее число вы­писываемых газет равно 3, 5, 5, 3, 2. Среднее по выборке равно 3,6, а дисперсия — 1,44 ( = 1,2).

Применяя для простоты формулы повторной случайной выборки, получаем

Таким образом, с вероятностью 0,95 можно утверждать, что до­верительный интервал для генеральной средней имеет следующие границы: (3,6 ± 1,96 0,54) = (3,6 ± 1,05) = (2,55; 4,65).



Возможности и ограничения систематической выборки. Система­тическая выборка является экономными удобным способом форми­рования выборочной совокупности. Однако при ее применении в социологических исследованиях необходимо следить за тем, чтобы; список, используемый в качестве основы выборки, не обладал порядком, отражающим периодичность в значениях изучаемой харак­теристики.

Проиллюстрируем это положение. При составлении основы вы­борки для опроса рабочих в одном из цехов завода выбранный интервал может совпасть с числом рабочих в бригаде, в списке ко­торой первым окажется бригадир. При систематическом отборе повышаются шансы попадания в выборку только одних бригадиров. При такой реализации выборки повышается вероятность получения значительных систематических ошибок.

Предварительное расположение элементов генеральной совокупности по убыванию или возрастанию исследуемой характеристики позволит избавиться от этой опасности. Так, если в рассмотренном примере основа выборки организуется на базе платежной ведомости, в которой лица расположены в порядке возрастания их заработной платы, то опасность попадания только на одних бригадиров исклю­чается.

Систематическая выборка из-за простоты реализации получила широкое применение в социологических исследованиях.

Серийная (гнездовая) выборка. При серийной выборке единицы отбора представляют собой статистические серии, т. е. совокупности статистически различимых единиц. В качестве таких единиц могут выступать семья, бригада, школьный класс, небольшие производственные коллективы в учреждениях, почтовые отделения, врачеб­ные участки, населенные пункты, территориальные общности и т. п. Отобранные в выборку серии подвергаются сплошному или выбо­рочному обследованию. Второй вариант используется в практике социологических исследований гораздо чаще, чем первый. Собствен­но говоря, любая многоступенчатая выборка представляет собой гнездовую выборку, в которой единицы отбора на высших ступенях являются гнездами из единиц отбора нижних ступеней.

Организация серийной выборки. Серийная выборка имеет суще­ственные организационные преимущества перед простой случайной выборкой, так как значительно легче произвести отбор и изучение нескольких коллективов, бригад, цехов и т. д., находящихся на одном месте, чем нескольких сотен пространственно разбросанных людей. Процедура отбора позволяет сконцентрировать выборку в сравнительно небольшом числе пунктов.

Серийная выборка может организовываться по схемам простой случайной и систематической выборок. Наконец, она может форми­роваться после предварительного районирования генеральной совокупности.

В первых двух случаях к информации о генеральной совокупно­сти — основе выборки — предъявляются те же требования, что и ко всем вероятностным выборкам: размещение элементов генеральной совокупности (серий) не должно быть каким-либо образом система­тизировано.

Метод маршрутного опроса. Этот метод социологи часто исполь­зуют, когда единицей наблюдения выступает семья.

В выборочную совокупность, например, намечено включить определенное число случайно отобранных семей или квартир. На карте города или населенного пункта нумеруются все улицы. С помощью таблицы случайных чисел отбираются большие числа, которые поз­воляют идентифицировать семьи или квартиры, попавшие в выбор­ку. Каждое большое число рассматривается как состоящее из трех компонентов: первые две или три цифры в нем указывают номер улицы, следующая цифра — номер дома, последняя цифра — номер квартиры в выбранном доме.

Например, число 42—25—3 указывает квартиру № 3 дома № 25 на 42-й улице.

Организация серийной выборки методом маршрутного опроса наиболее приспособлена к городам, где преобладают отдельные квартиры, или к населенным пунктам, где еще сохраняется частное домовладение (в последнем случае отпадает необходимость выбирать номер квартиры).

Возможности и ограничения серийной выборки. При серийной выборке всегда имеет место занижение по сравнению с генеральной совокупностью дисперсии изучаемого признака в силу определен­ного сходства единиц в сериях.

Например, вполне объяснима заметная связь между членами семьи. Характер профессий детей в определенной мере может зави­сеть от профессии родителей. Очевидна связь членов семьи в отно­шении их социальной принадлежности.

С точки зрения статистика, сходство элементов серий приводит к избыточности однотипной, повторяющейся информации. Социолог должен учитывать этот органически присущий серийной выборке статистический порок при прочих равных условиях, выбирая в ка­честве гнезд такие общности, которые содержат максимально разно­родные конечные единицы наблюдения. Так, при изучении, ска­жем, качества медицинского обслуживания населения города разум­но в виде гнезд выбрать совокупность жителей, обслуживаемых отдельными почтовыми отделениями, или проживающих на терри­тории отдельных ЖЭКов, но никак не врачебные участки, поскольку последний выбор привел бы к искажению результатов.

Расчет характеристик серийной выборки. Расчет характеристик серийной выборки имеет некоторое отличие от простой случайной и систематической выборок. Это отличие связано прежде всего с вычислением дисперсий и ошибки выборки.

Вычисление средней ошибки серийной выборки основано на дис­персии серийных средних.

Пример. Из генеральной совокупности, включающей 16 семей, сделана серийная выборка, состоящая из четырех семей (в каждой семье по 4 человека)[118]. Перед исследователями стоит задача найти оценку средней заработной платы в генеральной совокупности, оцен­ку ее дисперсии и среднюю ошибку выборки (табл. 18).

Средняя ошибка бесповторной серийной выборки определяется по формуле

где — дисперсия серийных средних; С — число серий в гене­ральной совокупности (равных по численности); с — число серий в выборке.

 

Таблица 18.Данные для примера

Семья Заработная плата работающих членов семьи (x), руб. Средняя заработная плата семьи , руб.
81,75 86,75 86,75 78,75
           

 

Расчет дисперсии серийных средних:

 

81,75 86,75 86,75 78,75 —1,75 3,25 3,25 —4,75 3,0625 10,5625 10,5625 22,5625
x = 83,5   å = 46,75

 

Тогда

В зависимости от выбранной доверительной вероятности средняя заработная плата для генеральной совокупности 83,5 ±Z1,53. На­пример, исследователь может с вероятностью в 0,95 утверждать, что в данной генеральной совокупности средняя заработная плата не меньше 80,6 руб. и не больше 86,5 руб.

Так как вычисление ошибки для серийной выборки основано на дисперсии серийных средних, то серийный отбор будет тем репре­зентативнее, чем меньше степень колеблемости серийных средних, измеряемая величиной их дисперсии.

4. Стратифицированный отбор

Понятие стратифицированной выборки. Вероятностная выборка с любой техникой отбора (простая случайная, систематическая, се­рийная или многоступенчатая) становится стратифицированной,

если процедурам отбора предшествует выделение в генеральной со­вокупности однородных частей, называемых стратами.

В статистическом смысле стратификация соответствует выделе­нию таких статистически однородных групп, колеблемость изучае­мых признаков которых внутри меньше, чем между ними.

Эта дифференциация внутри генеральной совокупности на ка­чественно более однородные группы содержательно связана с пред­метом исследования.

Стратификация совокупности оказывается необходимой во всех случаях, когда совокупность является неоднородной по социальным, экономическим и другим характеристикам единиц наблюдения.

Так, исследуя профессиональную ориентацию школьников в пре­делах одного города, можно в одну страту отнести 16 школ, распо­ложенных в районе старых застроек, во вторую — 20 школ, распо­ложенных в районах новостроек. Для опроса можно отобрать вы­пускников из двух школ первой страты, а также из двух школ второй страты. Если такая группировка школ действительно отра­жает различия районов, которые существенно учитывать в исследо­вании профессиональной структуры, то колеблемость изучаемых признаков внутри каждой группы школ должна быть меньше, чем между группами.

В качестве страт могут быть использованы как естественные образования, так и специально формируемые для определенного исследования. Например, такими стратами могут выступать эконо­мико-географические регионы или области страны, города, класси­фицированные по их административному статусу и по численности населения. Стратами могут выступать и идеальные образования. Примером является выделение в генеральной совокупности при ис­следовании отношения молодежи к труду, шести групп по содер­жанию труда[119].

Стратифицирующий признак. Признак, по значениям которого производится стратификация генеральной совокупности, называется признаком стратификации. Стратификация может проводиться по одному или нескольким признакам.

Организация стратифицированной выборки. Организация стра­тифицированной выборки требует представления о характере рас­пределения по всей совокупности тех признаков, которые должны быть положены в основу образования типических групп, или страт.

Неправильный выбор признака для группировки элементов ге­неральной совокупности может не увеличить репрезентативность выборочных данных по сравнению со случайной выборкой того же объема.

Организация стратифицированной репрезентативной выборки связана на практике с известными трудностями, особенно если вы­деленные страты неравночисленны Математическая статистика ре­комендует в этих случаях, чтобы размеры выборки из каждой страты были пропорциональны средним квадратическим отклонениям в соответствующих стратах генеральной совокупности. Но дисперсии, как правило, неизвестны. Поэтому часто при организации отбора из страт генеральной совокупности производится отбор пропорциональ­но их размеру (доле) в общей численности совокупности.

Еще один употребляемый в социологии вариант выбора — это отбор одинакового количества единиц наблюдения из неравных типических групп.

Выборка организуется в зависимости от рассмотренных вариан­тов отбора с объемом, который рассчитывается по следующим формулам.

1. Пропорционально среднеквадратическому отклонению 5; в 1-й типической группе, найденному по результатам пробного исследо­вания. Размер ( ) выборки из i-й типической группы равен

где п — объем всей выборки; объем i-й группы в генеральной совокупности; l — количество групп. Весь объем выборки равен

2. Пропорционально размеру групп: , где N объем генеральной совокупности. Весь объем выборки равен .

3. Отбор равного числа единиц наблюдения . Весь объем выборки определяется по формуле .

Расчет характеристик стратифицированной выборки. Характери­стики такой выборки рассчитываются как взвешенные величины: показатели по каждой страте комбинируются в общую среднюю; вклад групповых средних пропорционален весу каждой страты в выборочной или генеральной совокупности.

В стратифицированной выборке общая дисперсия выборки имеет как бы два источника: дисперсию групповых средних, которые характеризуют каждую страту , и среднюю дисперсию из дисперсий внутри каждой из этих страт . Первую составляющую принято называть межгрупповой дисперсией, а вторую — внутригрупповой дисперсией.

Это записывается следующим образом:

(7)

Расчет средней ошибки при отборе, пропорциональном числен­ности единиц в стратах, производится по формуле

(8)

или, если пренебречь отношением n/N,

(9)

В выражениях (8) и (9) вычисляется исходя из формулы (7), т. е. , где — общая дисперсия выборки — подсчиты­вается как для простой выборки, не принимая во внимание страти­фикацию.

 

Таблица 19.Данные к примеру

 

Семья Группа (i)
I II III IV V
Размер на подписку, руб.

Из соотношения для средней ошибки (7) следует, что ошибка стратифицированной выборки меньше средней ошибки чисто слу­чайной выборки либо равна ей, когда межгрупповая дисперсия равна нулю.

Пример. Предположим, что выборка содержит 5 страт (группы семей по среднему доходу[120]). Необходимо определить величину рас­ходов на годовую подписку. Из каждой i-й страты взяты по две семьи (объем выборки п = 10, см. табл. 19),

Расчет:

 

2,5 8,0   13,5 14,0 17,0 —8,5 —3   2,5 3,0 6,0 72,25 9,00   6,25 9,00 36,00
= 11   å = 132,5    

Найдем дисперсию, не учитывая расслоение семей на 5 групп:

 

№ п/п
—8 —9 —1 —5
    å = 314


Отсюда внутригрупповая дисперсия , ошибка для стратифицированной выборки .

Для случайной выборки .

Таким образом, как видно из рассмотренного примера, страти­фицированная выборка при прочих равных условиях дает более точные результаты.

5. Многоступенчатые и комбинированные способы формирования выборочной совокупности

Выборка может строиться как одно- или многоступенчатая.

При многоступенчатом отборе на каждой ступени меняется еди­ница отбора. Например, на первой ступени производится отбор про­мышленных предприятий, на второй — отбор бригад на предприя­тиях, попавших в выборку па первой ступени, на третьей — отбор рабочих из бригад, попавших в выборку на второй ступени, отбора, и т. д.

Необходимость многоступенчатого отбора вызвана, как правило, отсутствием информации о всех единицах генеральной совокупности. При многоступенчатом отборе для организации первой ступени не­обходимо иметь информацию о распределении того или иного приз­нака по всей совокупности единиц отбора первой ступени. Для организации второй ступени нужна уже только информация об отобранных единицах первой ступени.

На первой ступени, как правило, используется случайный отбора начиная со второй ступени случайно отбирается количество еди­ниц, пропорциональное размеру соответствующей единицы преды­дущей ступени и т. д.

Доли отбора на каждой ступени комбинируются таким образом, чтобы в целом доля отбора выборки обеспечивала всем единицам генеральной совокупности равные шансы попасть в выборку.

Пропорциональный способ организации многоступенчатой вы­борки имеет определенные неудобства. Социолог, с одной стороны, уменьшает объем выборки в целях экономии средств и сокращения сроков проведения исследования, а с другой, — соблюдая принцип пропорциональности, он может получить очень малочисленные группировки по отдельным факторам, которые окажутся недостаточ­ными для статистического анализа.

Существует несколько способов формирования многоступенчатых выборок.

Для примера рассмотрим способ организации двухступенчатой выборки, отбор единиц которой на первой ступени осуществляется с вероятностью, пропорциональной размеру. Воспользуемся для при­мера условиями и задачами организации выборки в известном ис­следовании ленинградских социологов.

Единицы первой ступени отбора — предприятия города.

Составляется полный список единиц наблюдений первой ступени отбора — промышленных предприятий и численности молодых рабочих па каждом из них. Генеральная совокупность включала 50 таких предприятий.

 

Предприятие (i) Число молодых рабочих Накопленные частоты
. . . i . . . N1 N2 . . . Ni . . . N50 N1 N1 + N2 . . . N1 + N2 + ... + Ni . . . N1 + N2+ ... + N50 = 50
   

 

 

Единицы отбора ранжируются по численности рабочих, выделен­ных в качестве единиц наблюдения. Принимается решение о вклю­чении в выборку определенного числа заводов, например пяти. По таблице случайных чисел выбирается 5 чисел ( , , , и ) между N1 и N (общей кумулированной численностью рабочих в генеральной совокупности); В выборку включаются те предприятия, чьи номера (i) оказались в той же строке (j), которая соответствует кумуляте, содержащей одно из чисел (k = 1¸5), т. е. i = j, если N1 + N2 + ... + Nj-1< < N1 + N2 + ... + Nj по всем k.

Вторая ступень отбора реализуется, следующим образом. На каждом предприятии, включенном в выборку, выбирается одно и то же число рабочих ( единиц второй ступени отбора). Далее отбор может быть случайным или систематическим.

Ошибка многоступенчатой выборки (на примере двухступенча­той выборки). При многоступенчатом отборе (начиная с двухсту­пенчатого) следует учитывать специфику расчета ошибки выборки. Каждая ступень отбора делает свой вклад в отклонение находи­мых оценок от истинных значений характеристик в генеральной совокупности.

Для достаточно большого объема выборки существуют упрощен­ные формулы расчета средней ошибки.

Для двухступенчатой выборки

(10)

где — дисперсия единиц первой ступени отбора и п1 их числен­ность; —дисперсия единиц второй ступени отбора и — их численность в составе единиц первой ступени отбора в выборке.

В формуле учтены оба источника ошибок репрезентативности при двухступенчатом отборе. Первый член формулы под корнем указывает па дисперсию, вызванную формированием первой ступени отбора. Второй член указывает па внутригрупповую дисперсию, связанную с организацией второй ступени выборки.

Упрощенность этой формулы состоит в том, что внутригрупповые дисперсии рассчитываются внутри каждой единицы первой ступени после отбора из нее единиц второй ступени. Здесь указана «невзвешенная» средняя из квадратов ошибок по всей сумме единиц второй ступени ( ). Это второй источник случайных ошибок.

Многофазовый отбор. Многофазовый отбор является особым ви­дом многоступенчатого отбора. Он заключается в том, что из сфор­мированной выборки большего объема производится новая выборка (подвыборка) меньшего объема и т. д.

Особенностью этого способа формирования выборочной совокуп­ности является то, что независимо от числа фаз в последующих подвыборках используется неизменно одна и та же единица отбора, что и в основной выборке.

К многофазовому отбору прибегают тогда, когда в рамках ис­следования, которое проводится на большой выборке, возникает не­обходимость тщательного изучения более узкого круга вопросов. Для этих целей формируется вторая фаза — та же выборка в миниатю­ре и т. д.

Как и в многоступенчатых выборках, при многофазовом отборе каждая фаза является источником случайных ошибок.

Пример двухфазовой стратифицированной выборки[121]. В ходе, ис­следования сельского населения возникла необходимость более уг­лубленно изучить его культурные потребности и материальные за­траты на потребление культуры.

Основная выборка (п) была сделана из стратифицированной ге­неральной совокупности изучаемый регион был разделен на 5 трат по типу хозяйств: от мелких (1) до самых крупных (5). Вто­рая фаза выборки ( ) была организована из этой основной.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.