Сделай Сам Свою Работу на 5

Зависимые и независимые события





Зависимость событий понимается в вероятностном смысле, а не в функциональном. Это значит, что по появлению одного из зависимых событий нельзя однозначно судить о появлении другого. Вероятностная зависимость означает, что появление одного из зависимых событий только изменяет вероятность появления другого. Если вероятность при этом не изменяется, то события считаются независимыми.

Определение: Пусть - произвольное вероятностное пространство, - некоторые случайные события. Говорят, что событие А не зависит от события В, если его условная вероятность совпадает с безусловной вероятностью :

.

Если , то говорят, что событие А зависит от события В.

Понятие независимости симметрично, то есть, если событие А не зависит от события В,то и событие В не зависит от события А. Действительно, пусть . Тогда . Поэтому говорят просто, что события А и В независимы.

Из правила умножения вероятностей вытекает следующее симметричное определение независимости событий.

Определение: События А и В, определенные на одном и том же вероятностном пространстве , называются независимыми, если

.

Если , то события А и В называются зависимыми.



Отметим, что данное определение справедливо и в случае, когда или .

Свойства независимых событий.

1. Если события А и В являются независимыми, то независимыми являются также следующие пары событий: .

▲ Докажем, например, независимость событий . Представим событие А в виде: . Поскольку события являются несовместными, то , а в силу независимости событий А и В получаем, что . Отсюда , что и означает независимость . ■

2. Если событие А не зависит от событий В1 и В2, которые являются несовместными ( ), то событие А не зависит и от суммы .

▲ Действительно, используя аксиому аддитивности вероятности и независимость события А от событий В1 и В2, имеем:

. ■

Связь между понятиями независимости и несовместности.

Пусть А и В - любые события, имеющие ненулевую вероятность: , так что . Если при этом события А и В являются несовместными ( ), то и поэтому равенство не может иметь место никогда. Таким образом, несовместные события являются зависимыми.

Когда рассматривают более двух событий одновременно, то попарная их независимость недостаточно характеризует связь между событиями всей группы. В этом случае вводится понятие независимости в совокупности.



Определение: События , определенные на одном и том же вероятностном пространстве , называются независимыми в совокупности, если для любого 2 £ m £ n и любой комбинации индексов справедливо равенство:

.

При m = 2 из независимости в совокупности следует попарная независимость событий. Обратное неверно.

Пример. (Бернштейн С.Н.)

Случайный эксперимент заключается в подбрасывании правильного четырехгранника (тетраэдра). Наблюдается грань, выпавшая книзу. Грани тетраэдра окрашены следующим образом: 1 грань - белая, 2 грань - чёрная,
3 грань - красная, 4 грань - содержит все цвета.

Рассмотрим события:

А = {Выпадение белого цвета}; B = {Выпадение черного цвета};

C = {Выпадение красного цвета}.

Тогда ;

.

Следовательно, события А, В и С являются попарно независимыми.

Однако, .

Поэтому события А, В и С независимыми в совокупности не являются.

На практике, как правило, независимость событий не устанавливают, проверяя ее по определению, а наоборот: считают события независимыми из каких-либо внешних соображений или с учетом обстоятельств случайного эксперимента, и используют независимость для нахождения вероятностей произведения событий.

Теорема (умножения вероятностей для независимых событий).

Если события ,определенные на одном и том же вероятностном пространстве , являются независимыми в совокупности, то вероятность их произведения равна произведению вероятностей:



.

▲ Доказательство теоремы следует из определения независимости событий в совокупности или из общей теоремы умножения вероятностей с учетом того, что при этом

.■

Пример 1(типовой пример на нахождение условных вероятностей, понятие независимости, теорему сложения вероятностей).

Электрическая схема состоит из трех независимо работающих элементов. Вероятности отказов каждого из элементов соответственно равны .

1) Найти вероятность отказа схемы.

2) Известно, что схема отказала.

Какова вероятность того, что при этом отказал:

а) 1-й элемент; б) 3-й элемент?

Решение. Рассмотрим события = {Отказал k-й элемент}, и событие А = {Отказала схема}. Тогда событие А представляется в виде:

.

1) Поскольку события и несовместными не являются, то аксиома аддитивности вероятности Р3) неприменима и для нахождения вероятности следует использовать общую теорему сложения вероятностей, в соответствии с которой

.

Используя далее независимость событий , , имеем

.

2) Если уже известно, что схема отказала, то для нахождения вероятности отказа при этом 1-го элемента необходимо определить условную вероятность . По определению условной вероятности и с учетом того, что , получаем:

.

Поскольку , то условная вероятность находится несколько иначе:

.

Пример 2.

Вероятность попадания в цель при каждом выстреле 0,9. Сколько надо сделать независимых выстрелов, чтобы поразить цель с вероятностью не менее, чем 0,9999?

Решение. Пусть n – число сделанных выстрелов, событие = {Попадание в цель при k-м выстреле}, , событие А = {Поражение цели}. Очевидно, что , но поскольку события , не являются попарно несовместными, то для нахождения вероятности следует использовать теорему сложения вероятностей в общем виде.

Удобнее перейти к противоположному событию и использовать свойство 1 независимых событий:

Разрешая полученное неравенство относительно n, получаем, что .

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.