Сделай Сам Свою Работу на 5

ПРЕДМЕТ МЕТОДИКИ ПРЕПОДАВАНИЯ





ИНФОРМАТИКИ

2.1. Информатика как наука:

Предмет и понятие

 

Появление и начальное становление информатики как науки относится ко второй половине прошлого века. Область интересов информатики — это структура и общие свойства информации, а также вопросы, связанные с процессами поиска, сбора, хранения, преобразования, передачи и использования информации в самых различных сферах человеческой деятельности. Обработка огромных объемов и потоков информации немыслима без автоматизации и систем коммуникации, поэтому электронные вычислительные машины и современные информационные и коммуникационные технологии являются и фундаментальным ядром, и материальной базой информатики.

Термин «информатика» (в том смысле как он применен в первом абзаце) в отечественной литературе используется сравнительно недавно, к тому же его толкование до настоящего времени еще нельзя считать установившимся и общепринятым. Терминологические и понятийные трудности, связанные с сущностью самого понятия «информатика» (равно как и производных понятий) не преодолены до сих пор. Обратимся к истории вопроса, восходящей ко времени появления электронных вычислительных машин.



После второй мировой войны получила бурное развитие кибернетика как общая наука об управлении и связи в системах различной природы — искусственных, биологических, социальных.

Рождение кибернетики принято связывать с опубликованием в 1948 г. американским математиком Норбертом Винером книги «Кибернетика, или Управление и связь в животном и машине». В этой работе были показаны пути создания общей теории управления и заложены основы методов рассмотрения проблем управления и связи для различных систем с единой точки зрения. Развиваясь одновременно с прогрессом электронных вычислительных машин, кибернетика со временем превращалась в более общую науку о преобразовании информации. Под информацией в кибернетике понимается любая совокупность сигналов, воздействий или сведений, которые некоторая система воспринимает от окружающей среды (входная информация X), выдает в окружающую среду (выходная информация Y), а также хранит в себе (внутренняя, внутрисистемная информация Z) (рис. 2.1).



Рис. 2.1

 

Развитие кибернетики в нашей стране переживало драматические периоды (достаточно подробный обзор событий и фактов, сопровождавших становление информатики в СССР и, далее, в России, дан в статье Д. А. Поспелова [32]). Как писал в начале 1960-х гг. академик А. И. Берг, немало сделавший для официального признания кибернетики в Советском Союзе, «... в 1955 — 57 гг. и даже позже в нашей литературе были допущены грубые ошибки в оценке значения и возможностей кибернетики. Это нанесло серьезный ущерб развитию науки в нашей стране, привело к задержке в разработке многих теоретических положений и даже самих электронных машин» [4]. Достаточно сказать, что еще в четвертом издании «Краткого философского словаря» (1954) кибернетика была определена как «реакционная лженаука, возникшая в США после второй мировой войны и получившая широкое распространение и в других капиталистических странах; форма современного механицизма» [34]. Помимо чисто идеологических мотивов, причиной этого явления послужили, с одной стороны, недооценка новой бурно развивающейся науки отдельными учеными «классического» направления, с другой — неумеренное пустословие тех, кто вместо активной разработки конкретных проблем кибернетики в различных областях спекулировал на полуфантастических прогнозах о ее безграничных возможностях, дискредитируя тем самым эту науку. Случилось так, что «...кибернетика обросла паразитным слоем пустой болтовни, за которой не все сумели разглядеть очень важное научно-техническое открытие, создавшее предпосылки для революции в развитии производительных сил человеческого общества» [7].



Но и после преодоления идеологических барьеров и официального признания кибернетики как науки (а уже в 1959 г. в Академии наук СССР был создан Научный совет по комплексной проблеме «Кибернетика») трудностей не убавилось. Дело в том, что развитие отечественной кибернетики в течение длительного периода сопровождалось серьезными неудачами в реализации крупных государственных проектов. Приведем краткий обзор положения, сложившегося к середине 1980-х гг., ссылаясь на оценки специалистов [13].

Воодушевляющие перспективы применения кибернетики в народном хозяйстве возбудили предложения широкого применения математических методов и ЭВМ для целей глобального планирования и управления. Сформулированные крупными учеными, эти предложения нашли отражения в партийных и правительственных решениях. В государственные планы включались программы создания автоматизированных систем управления (АСУ) во всех звеньях народного хозяйства от предприятия до отрасли. АСУ должны были стать базой структурной перестройки управления народным хозяйством: с АСУ должны были взаимодействовать автоматизированные системы управления технологическими процессами (АСУТП), над АСУ предполагалось создать автоматизированные системы плановых расчетов (АСПР). Все автоматизированные системы планировалось реализовать на единой общегосударственной сети вычислительных центров. Однако по ряду причин были доведены до практической реализации лишь отдельные фрагменты системы управления, общая же идея достижения глобальной цели управления не была осуществлена.

К середине 1970-х гг. была поставлена задача создания САПР (систем автоматического проектирования); в рамках САПР получила развитие идея создания автоматизированных рабочих мест (АРМ) конструкторов, научных работников, плановиков и т.п. Позднее получила широкое распространение и поддержку идея создания гибких автоматизированных производств (ГАП) и промышленных роботов.

Работа в указанных направлениях привела к накоплению значительного опыта создания информационных систем управления технико-экономическими объектами, были созданы отдельные САПР, давшие возможность многократно увеличить производительность труда проектировщиков новых сложных систем; Достигнуты определенные успехи в области конструирования и «интеллектуализации» ЭВМ, в технологии их изготовления. Вместе с тем первоначально поставленные глобальные цели все-таки не были достигнуты. Сложилась ситуация, в которой, с одной стороны, требовалось окончательно отмежеваться от шелухи пустословия и выделить из кибернетики здоровое научное и техническое ядро, а с другой — консолидировать силы для развития нового движения к давно уже стоящим глобальным целям. (К сожалению, приходится констатировать, что неудачи и незавершенность крупномасштабных государственных проектов в области информатизации общества сохранялись и после описанных событий.)

Подойдем сейчас к вопросу о становлении информатики на основе кибернетики с терминологической точки зрения. Вскоре вслед за появлением термина «кибернетика» в мировой науке стало использоваться англоязычное «Computer Science» (компьютерная наука); этот термин и сейчас достаточно широко распространен в Соединенных Штатах Америки, в Канаде и некоторых странах латино-американского континента в качестве наименования как для научной, так и учебной дисциплины, изучающих процессы обработки, хранения и передачи информации при помощи компьютеров и телекоммуникационных систем [11].

Чуть позже, на рубеже 60-х и 70-х гг. XX века, французы ввели термин «informatique» (информатика), образованный, судя по всему, как производное от двух французских слов — «informatione» (информация) и «avtomatique» (автоматика). Новый термин получил впоследствии распространение в СССР (следовательно, в России и странах СНГ) и странах Западной Европы. Надо сказать, что в русском языке наиболее раннее (примерно с середины 1960-х гг.) употребление термина «информатика» было связано с узкоконкретной областью научно-технической информации и документалистики (см., например, [25]). Согласно определению, данному в Большой советской энциклопедии, информатика рассматривалась как «дисциплина, изучающая структуру и общие свойства научной информации, а также закономерности ее создания, преобразования, передачи и использования в различных сферах человеческой деятельности» [26]. Подобное определение связывало информатику с библиотековедением, библиографией, методами поиска информации в массивах документов. С этой целью в 1952 г. был создан Институт научной информации АН СССР, позже преобразованный в ВИНИТИ — Всесоюзный институт научной и технической информации.

Параллельно с этим направлением (и независимо от него) развивалось другое толкование термина «информатика», которое, как считал академик А.П.Ершов, начиная со второй половины 1970-х гг. стало широко закрепляться в отечественной литературе после появления перевода с немецкого (под ред. А. П. Ершова) учебного пособия и задачника [1, 2] по вузовскому курсу информатики. Поясняя значение термина «информатика» (в связи с открытием с 1983 г. в составе Академии наук СССР нового отделения информатики, вычислительной техники и автоматизации),

А. П. Ершов утверждал, что этот термин вводится в русский язык как название фундаментальной естественной науки, изучающей процессы передачи и обработки информации. При таком толковании информатика оказывается более непосредственно связанной с философскими и общенаучными категориями, проясняется и ее место в кругу «традиционных» академических научных дисциплин».

Комментируя это определение информатики, А. П. Ершов отмечал далее: «Сознавая некоторую относительность деления наук на естественные и общественные, мы все же относим информатику к естественнонаучным дисциплинам в соответствии с принципом вторичности сознания и его атрибутов и с представлением о единстве законов обработки информации в искусственных, биологических и общественных системах. Отнесение информатики к фундаментальным наукам отражает общенаучный характер понятия информации и процессов ее обработки. Информатика как самостоятельная наука вступает в свои права тогда, когда для изучаемого фрагмента мира построена так называемая информационная модель. И хотя общие методологические принципы построения информационных моделей могут быть предметом информатики, само построение и обоснование информационной модели является задачей частной науки. Понятия информационной и математической моделей очень близки друг к другу, поскольку и та и другая являются знаковыми системами. Информационная модель — это то сопряжение, через которое информатика вступает в отношение с частными науками, не сливаясь с ними, и в то же время не вбирая их в себя» [8, с. 29—30].

Созвучно высказанному выше представлению о науке информатике и мнение академика Н.Н.Моисеева: «Зародившись в недрах науки о процессах управления — кибернетики, информатика ... буквально на наших глазах из технической дисциплины о методах и средствах обработки данных при помощи средств вычислительной техники превращается в фундаментальную естественную на-уку об информации и информационных процессах в природе и обществе» [28]. Между тем среди отечественных ученых с самого начала становления информатики как самостоятельной отрасли науки не было полного единодушия в ответе на вопрос, что такое информатика.

В том же «установочном» сборнике «Становление информатики» В- С.Михалевич, Ю. М. Каныгин и В. И. Гриценко утверждают: «Информатика — комплексная научная и инженерная дисциплина, изучающая все аспекты разработки, проектирования, создания, оцен-Kttj Функционирования машинизированных (основанных на ЭВМ) систем переработки информации, их применения и воздействия на различные области социальной практики» [27]. Как видим, в последнем толковании не только явно подчеркивается связь самого возникновения информатики с развитием компьютерной техники, но и то, что информатика — это следствие развития ЭВМ.

Коснемся вопроса об объекте и предмете науки информатики. В общегносеологическом плане противопоставление объекта и предмета науки является относительным [36]. И все же представление о различии понятий «объект науки» и «предмет науки» важно для установления существа любой науки.

Объект — это область действительности, на которую направлена деятельность исследователя, а предмет — это посредствующее звено между субъектом и объектом исследования. Понятие «предмет науки» выражает диалектическое единство объективной и субъективной сторон познания, оно не тождественно понятию «объект науки». Основное структурное отличие предмета от объекта заключается в том, что в предмет входят лишь главные, наиболее существенные свойства и признаки[3].

Объект выступает как такая часть объективной реальности, которая находится во взаимодействии с субъектом, причем само выделение объекта познания осуществляется при помощи форм практической и познавательной деятельности, выработанных обществом и отражающих свойства объективной реальности [36, с. 452]. Предметная область — область объектов, универсум рассмотрения (рассуждения), класс (множество) объектов, рассматриваемых в пределах данного контекста (понимаемом как отдельное рассуждение, фрагмент научной теории или теория в целом). Например, в теории чисел предметной областью служит натуральный ряд (множество целых неотрицательных чисел) [36, с. 525].

В.С.Леднев при сопоставлении понятий «объект» и «предмет» науки опирается на представления о двух способах отражения наами их объектов: аспектный и объектный [20, с. 85 — 87]. При этом при определении предмета науки учитывается не только ее объект, «… но и аспект отражения наукой ее объекта» [20, с. 99]. Вот как описывает В.С.Леднев предмет и объект науки кибернетики: «Предметная область кибернетики охватывает... живую природу, человека, общественные и технические системы. Но эта предметная область кибернетикой всесторонне не изучается. Всесторонне (в объектном плане) ее изучают биология, антропологические, общественные и технические науки. Кибернетика изучает только информационно-управленческий аспект этой предметной области — процессы управления. К тому же она рассматривает лишь определенную сторону процесса управления — его общие закономерности, свойственные любым процессам управления, т.е. не зависящие от специфики конкретных систем» [20, с. 90].

Отсюда напрашивается вывод, что предмет информатики, как и кибернетики, образуется на основе широких областей своих приложений, а объект — на основе общих закономерностей, свойственных любым информационным процессам в природе и обществе.

Действительно, поскольку информационный подход все более начинает восприниматься как общенаучный метод познания природы и общества, широчайшие приложения информатики становятся ее важнейшей особенностью. Это приложения, охватывающие в основном все виды общественной деятельности: производство, управление, науку, образование, проектные разработки, торговлю, денежно-кассовые операции, медицину, криминалистику, охрану окружающей среды и др., а также быт, личную деятельность. Главное значение здесь имеет совершенствование социального управления на основе информационных процессов и информационно-коммуникационных технологий.

Информатика изучает то общее, что свойственно всем многочисленным разновидностям конкретных информационных процессов (технологий). Эти информационные процессы и технологии и есть объект информатики (см. также [27, с. 33— 35]).

Предмет информатики определяется многообразием ее приложений. Различные информационные технологии, функционирующие в разных видах человеческой деятельности (управление производственным процессом, системы проектирования, финансовые операции, образование и т.п.), имея общие черты, в то же время существенно различаются между собой. Тем самым образуются различные «предметные» информатики, базирующиеся на разных наборах операций и процедур, различных видах кибернетического оборудования (во многих случаях наряду с компьютером используются специализированные приборы и устройства), разных информационных носителях и т.п.

Одной из областей человеческой деятельности, испытывающей в настоящее время активное влияние информатики, является система образования. Ветвь информатики, обслуживающая проблемы средней школы, получила название школьной информатики. Впервые в отечественной литературе этот термин введен в широкое употребление в одноименном концептуальном документе, разработанном под руководством А.П.Ершова [9]. Воспроизведем описание предмета школьной информатики, опираясь на основные положения указанной работы.

Школьная информатика определяется как ветвь информатики, занимающаяся исследованием и разработкой программного, технического, учебно-методичесйсого и организационного обеспечения применения ЭВМ в школьном учебном процессе.

Программное (или математическое) обеспечение школьной информатики поддерживает информационную, управляющую и обучающую системы средней школы, включает в себя программистские средства для проектирования и сопровождения таких систем, а также средства общения с ними, ориентированные на школьников, учителей и работников аппарата управления органами просвещения.

В области технического обеспечения школьная информатика имеет своей целью экономически обосновать выбор технических средств для сопровождения учебно-воспитательного процесса школы; определить параметры оборудования типовых школьных кабинетов вычислительной техники (КВТ); найти оптимальное соотношение использования серийных средств и оригинальных разработок, ориентированных на среднюю школу.

Учебно-методическое обеспечение школьной информатики состоит в разработке учебных программ, методических пособий, учебников по школьному курсу информатики, а также по всем школьным предметам, которые могут испытывать методологическое влияние информатики, и по курсам, при преподавании которых планируется использование средств информатики.

Проблемы организационного обеспечения, связанного с внедрением и поддержанием новой информационной технологии учебного процесса, сложны и многообразны, особенно на первом этапе компьютеризации школьного образования. Сюда, в частности, относятся: организационно-технические мероприятия по обеспечению и последующему сопровождению технической базы школьной информатики; организации разработки, тиражирования и доставки педагогических программных средств (ППС) в школу; подготовка и переподготовка кадров для всех уровней системы просвещения и прежде всего школьных учителей, способных нести в массовую школу информатику как новую научную дисциплину, как инструмент совершенствования преподавания других школьных предметов, как стиль мышления.

В связи с развитием информатики возникает вопрос о ее взаимосвязи и разграничении с кибернетикой. При этом, очевидно, требуется уточнение предмета науки кибернетики, более строгое его толкование. Информатика и кибернетика имеют много общего основанного на концепции управления, однако «...информатика не растворяется целиком в кибернетике» [27, с. 35]. Один из подходов разграничения информатики и кибернетики — отнесение к области информатики исследований информационных технологий только в социальных системах, а не в любых кибернетических системах (т.е. системах любой природы: биологических, технических и т.д.). Кроме того, за кибернетикой сохраняются исследования общих законов движения информации в произвольных системах, в то время как информатика, «опираясь на этот теоретический фундамент, изучает технологию — конкретные способы и приемы переработки, передачи, использования информации. Кибернетические принципы не зависят от частных реальных систем, а принципы информатики всегда в технологической связи именно с реальными системами» [27, с. 36].

Не все разделы информатики возникали одновременно. История информатики связана с постепенным расширением области ее интересов. Возможность расширения диктовалась развитием компьютеров и накоплением моделей и методов их применения при решении задач различного типа.

Как считает Д. А. Поспелов, структуру информатики в настоящее время определяют следующие основные области исследования [32]:

• теория алгоритмов (формальные модели алгоритмов, проблемы вычислимости, сложность вычислений и т.п.);

• логические модели (дедуктивные системы, сложность вывода, нетрадиционные исчисления: индуктивный и дедуктивный вывод, вывод по аналогии, правдоподобный вывод, немонотонные рассуждения и т.п.);

• базы данных (структуры данных, поиск ответов на запросы, логический вывод в базах данных, активные базы и т.п.);

• искусственный интеллект (представление знаний, вывод на знаниях, обучение, экспертные системы и т.п.);

• бионика (математические модели в биологии, модели поведения, генетические системы и алгоритмы и т.п.);

• распознавание образов и обработка зрительных сцен (статистические методы распознавания, использование призначных пространств, теория распознающих алгоритмов, трехмерные сцены и т. п.);

• теория роботов (автономные роботы, представление знаний о мире, децентрализованное управление, планирование целесообразного поведения и т.п.);

• инженерия математического обеспечения (языки программирования, технологии создания программных систем, инструментальные системы и т.п.);

• теория компьютеров и вычислительных сетей (архитектурные решения, многоагентные системы, новые принципы переработки информации и т.п.);

• компьютерная лингвистика (модели языка, анализ и синтез текстов, машинный перевод и т.п.);

• числовые и символьные вычисления (компьютерно-ориентированные методы вычислений, модели переработки информации в различных прикладных областях, работа с естественно-языковыми текстами и т.п.);

• системы человеко-машинного взаимодействия (модели дискурса, распределение работ в смешанных системах, организация коллективных процедур, деятельность в телекоммуникационных системах и т.п.);

• нейроматематика и нейросистемы (теория формальных нейронных сетей, использование нейронных сетей для обучения, нейрокомпьютеры и т.п.);

• использование компьютеров в замкнутых системах (модели реального времени, интеллектуальное управление, системы мониторинга и т. п.).

 

фундаментальные Основы информатики
  ТЕОРЕТИЧЕСКАЯ ИНФОРМАТИКА Информация как семантическое свойство материи. Информация и эволюция в живой и неживой природе. Начало общей теории информации. Методы измерения информации, Макро- и микроинформация. Математические и информационные модели. Теория алгоритмов. Стохастические методы в информатике. Вычислительный эксперимент как методология научного исследования. Информация и знания. Семантические аспекты интеллектуальных процессов и информационных систем. Информационные системы искусственного интеллекта. Методы представления знаний. Познание и творчество как информационные процессы. Теория и методы разработки и проектирования информационных систем и технологий.
СРЕДСТВА ИНФОРМАЦИИ ТЕХНИЧЕСКИЕ ОБРАБОТКИ, ОТОБРАЖЕНИЯ И ПЕРЕДАЧИ ДАННЫХ Персональные компьютеры. Рабочие станции. Устройства ввода/вывода и отображения информации. Аудио- и видеосистемы, системы мультимедиа. Сети ЭВМ. Средства связи и компьютерные телекоммуникационные системы.
  ПРОГРАММНЫЕ   ПРОГРАММНЫЕ         СИСТЕМНЫЕ   Операционные системы и среды. Системы и языки программирования. Сервисные оболочки, системы пользовательского интерфейса. Программные средства межкомпьютерной связи (системы теледоступа), вычислительные и информационные среды.
РЕАЛИЗАЦИИ ТЕХНОЛОГИЙ УНИВЕРСАЛЬНЫХ Текстовые и графические редакторы. Системы управления базами данных. Процессоры электронных таблиц. Средства моделирования объектов, процессов, систем. Информационные языки и форматы представления данных и знаний; словари; классификаторы; тезаурусы. Средства зашиты информации от разрушения и несанкционированного доступа.
ПРОФЕССИОНАЛЬНО- ориентиро- ВАННЫХ Издательские системы. Системы реализации технологий автоматизации расчетов, проектирования, обработки данных (учета, планирования, управления, анализа, статистики и т.д.). Системы искусственного интеллекта (базы знаний, экспертные системы, диагностические, обучающие и др.).
ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ Ввода/вывода, сбора, хранения, передачи и обработки данных. Подготовки текстовых и графических документов, технической документации. Интеграции и коллективного использования разнородных информационных ресурсов. Защиты информации. Программирования, проектирования, моделирования, обучения, диагностики, управления (объектами, процессами, системами).
  СОЦИАЛЬНАЯ ИНФОРМАТИКА Информационные ресурсы как фактор социально-экономического и культурного развития общества. Информационное общество — закономерности и проблемы становления и развития. Информационная инфраструктура общества. Проблемы информационной безопасности. Новые возможности развития личности в информационном обществе. Проблемы демократизации в информационном обществе и пути их решения. Информационная культура и информационная безопасность личности.
           

 

Рис. 2.2. Структура предметной области информатики

 

Для сферы образования крайне существенно адекватное определение предметной области информатики, отражающей все фундаментальные основы этой области научного знания. На рис. 2.2 воспроизведена структура предметной области «Информатика» в той интерпретации, которая была представлена в Национальном докладе Российской Федерации на II Международном Конгрессе ЮНЕСКО «Образование и информатика» [31].

Эта структурная схема включает четыре раздела: теоретическая информатика, средства информатизации, информационные технологии, социальная информатика. При этом теоретическая информатика включает философские основы информатики, математические и информационные модели и алгоритмы, а также методы разработки и проектирования информационных систем и технологий. Как отмечает К. К. Колин, «в состав курса впервые включены вопросы, связанные с изучением социально-экономических аспектов информатизации общества, которые являются исключительно актуальными и все больше выдвигаются на первый план самим ходом развития общества. Поэтому такие важные понятия, как «информационные ресурсы», «информационная инфраструктура» и «информационная среда общества», а также его «информационный потенциал» и «информационная безопасность», станут доступными для тех слушателей, которые успешно изучат предлагаемый базовый курс информатики. Это очень важно в условиях, когда глобальный процесс информатизации общества все более активно воздействует на его социальные и экономические структуры, на роль и положение в обществе самого человека» [11, с. 80].

Информатика как учебный

Предмет в средней школе

 

Школьный учебный предмет информатики не может включать всего того многообразия сведений, которые составляют содержание активно развивающейся науки информатики. В то же время школьный предмет, выполняя общеобразовательные функции, должен отражать в себе наиболее общезначимые, фундаментальные понятия и сведения, раскрывающие существо науки, вооружать учащихся знаниями, умениями, навыками, необходимыми для изучения основ других наук в школе, а также подготавливающими молодых людей к будущей практической деятельности и жизни в современном информационном обществе.

Среди принципов формирования содержания общего образования современная дидактика выделяет принцип единства и противоположности логики науки и учебного предмета. Как отмечает в этой связи Б.Т.Лихачев, «идея единства и противоположности логики науки и логики конструирования учебного предмета обусловлена тем, что наука развивается в противоречиях. Она пробивает себе дорогу сквозь толщу предрассудков, совершает скачки вперед, топчется на месте и даже отступает.

Педагогическая логика содержания учебного предмета учитывает логику развития основных категорий, понятий данной науки. Вместе с тем педагоги и психологи руководствуются необходимостью учета возрастных особенностей освоения материала школьниками, организуют его на основе как восхождения от абстрактного к конкретному, так и от конкретного к абстрактному» [23, с. 378]. В связи с этим обстоятельством приходится констатировать, что на процессе формирования школьного учебного предмета информатики сказывается чрезвычайно малая временная дистанция между возникновением информатики как самостоятельной отрасли науки и включением в практику массовой общеобразовательной школы соответствующего ей нового учебного предмета — около 10—15 лет. По этой причине определение содержания школьного курса информатики является очень непростой задачей, на решении которой продолжает активно сказываться процесс становления самой базовой науки информатики. Проблема также и в том, что даже целесообразность введения в школу отдельного предмета информатики не является бесспорной — существуют аргументы (выдвигаемые как зарубежными, так и отечественными специалистами), которые показывают, что такой путь не является единственным и бесспорным (см., например, [29, 30, 35] и др.). Вопрос в конечном итоге заключается в следующем: чего в новом общеобразовательном знании больше — того, что должно составить отдельный учебный предмет для общеобразовательной школы, или того, что может (или должно) быть неразрывно связано с содержанием и технологией изучения всех школьных предметов? 42

Для ответа на этот вопрос обратимся к общедидактическому анализу проблемы развития содержания общего среднего образования, данному B.C. Ледневым [19, 20]. В результате длительного теоретического и экспериментального исследования, начатого еще в начале 60-х гг. прошлого века, было установлено, что фундаментальные основы кибернетического знания должны стать составной частью содержания общего школьного образования и что для решения этого вопроса требуется введение в систему школьных дисциплин отдельного учебного курса. Основываясь на общекибернетической природе нового знания, с самого начала своего исследования В.С.Леднев для наименования нового школьного предмета использует термин «кибернетика», однако, для данного рассмотрения это обстоятельство можно считать непринципиальным. Рассмотрим суть проблемы подробнее (см. также [18, 21, 22]).

Появление кибернетики как науки, изучающей общие закономерности информационных процессов управления, стало важнейшим шагом в познании окружающего мира. Как подчеркивал А. П. Ершов, «понимание единой природы информации вслед за установлением единой природы вещества и энергии стало важнейшим шагом к постижению материального единства мира» [8, с. 30]. Основываясь на этих же общенаучных представлениях о двух типах организации материальных систем — физическом (вещественно-энергетическом) и кибернетическом (антиэнтропийным) [20, с. 85], В.С.Леднев анализирует два ряда наук:

• науки, изучающие вещественно-энергетическую организацию материи (химия, космология, физика);

• науки, изучающие кибернетическую (антиэнтропийную) организацию материи (кибернетика, биология, комплекс антропологических наук, обществознание, техникознание).

При этом физика и кибернетика (каждая из них в своей группе) относятся к категории аспектных наук, т.е. наук, исследующих наиболее общие закономерности соответственно вещественно-энергетического и кибернетического подходов к исследованию действительности. На этой же основе складывается и концепция структуры содержания общего среднего образования. Согласно этой концепции, в частности, выделяются две группы общеобразовательных учебных дисциплин, которые изучают два основных аспекта организации окружающего мира: вещественно-энергетический и кибернетико-информационный. Каждая их этих групп предметов является системой со своим системообразующим элементом. В случае вещественно-энергетического аспекта таким системообразующим предметом является физика, в случае кибернетико-ин-формационного аспекта — кибернетика (информатика). Киберне-тико-информационная картина мира формируется практически всеми школьными предметами, однако только курс кибернетики (информатики) способен подытожить и обобщить полученные учащимися знания, т.е. выступить в качестве системообразующего фактора [22].

Таким образом, основываясь на описанной выше концепции научной картины мира и исходя из того, что набор обязательных учебных предметов предопределяется двумя факторами — обобщенной структурой деятельности и структурой объекта изучения [20, с. 108 —109], В.С.Леднев делает основополагающий вывод об обязательном перечне учебных общеобразовательных предметов, в число которых включается и кибернетика. При этом указанные выше два фактора носят объективный характер, что объясняет стабильность структуры общего среднего образования. Появление в этой структуре новых устойчивых учебных предметов может быть вызвано лишь существенными изменениями в научной картине мира и сменой доминирующего вида деятельности. Весьма примечательно, что курс кибернетики (информатики)— единственный новый общеобразовательный учебный предмет, родившийся в XX веке, все остальные учебные предметы для сферы общего образования — продукт XIX века.

Важным в рассматриваемой проблеме является вопрос о том, как изучать информатику в общеобразовательной школе — в отдельном учебном курсе, как дисциплину в составе одного из уже имеющихся курсов или целесообразнее рассредоточить учебный материал по информатике среди ряда учебных дисциплин. Рассматривая этот же вопрос применительно к общеобразовательному курсу кибернетики, В.С.Леднев приводит следующие аргументы в пользу отдельного учебного курса [19, с. 213].

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.