|
РАЗВИТИЕ ЛОГИЧЕСКОГО МЫШЛЕНИЯ УЧАЩИХСЯ В СРЕДНИХ И СТАРШИХ КЛАССАХ НА УРОКАХ ЛИТЕРАТУРЫ, МАТЕМАТИКИ, ИСТОРИИ И ДРУГИХ ПРЕДМЕТОВ
Разносторонние возможности для развития логического мышления учащихся предоставляет преподавание литературы, развивающее специфические стороны мышления. Учащиеся начинают с понятий «художественный образ», «литературный тип», «литературная форма», затем подходят к изучению более общих понятий — «критический реализм», «натурализм», «романтизм», «принцип историзма»; при этом понятия берутся в их системе, а не изолированно. Психологическая наука пытается дать классификацию типов мышления на основе того или иного существенного признака. «В одних случаях подчеркивается целенаправленный характер мышления; из типов мышления наглядно-действенное и наглядно-образное названы исходными, а на их основе развивается теоретическое мышление... В других — подчеркивается проблемность мышления, его направленность на решение какой-либо задачи. Особо отмечено, что из основных видов мышления — практического (действенного), конкретно-образного и теоретического (словесно-понятийного) — образный тип мышления не является более низким по сравнению с теоретическим»19. Какой же тип мышления формируется на уроках литературы? «В процессе изучения литературы, — пишет О. Ю. Богданова, — развиваются взаимосвязанные компоненты мышления учащихся: конкретно-образные, обобщенно-образные, теоретические и действенные»20. При анализе произведения художественной литературы учащиеся должны использовать как научные (теоретические), так и образные обобщения, самостоятельно применять всю систему знаний и понятий.
Большое значение для развития мышления учащихся имеет использование различных типов самостоятельных работ по литературе: самостоятельные работы по образцу, реконструктивные, вариативные самостоятельные работы на применение понятий науки, творческие самостоятельные работы, постановка самими учащимися проблемы и нахождение путей ее решения21.
Осветить подробно этот эксперимент не представляется возможным, поэтому мы остановимся лишь на некоторых аспектах работы, иллюстрируя их соответствующими примерами.
В преподавании литературы, как и других школьных предметов, иногда вместо определения понятия применяется метод сравнения. Сравнение широко используется для сопоставления литературных фактов и явлений, в частности для сопоставления сюжета повести с ее первоначальным планом. Учащимся предлагается вопрос проблемного характера: «С какой целью Пушкин изменил первоначальный план повести «Станционный смотритель»?»
Преподавание литературы предполагает использование разнообразных вопросов проблемного характера, на которых мы остновимся подробнее. Эти вопросы представляют собой познавательные поисковые задачи. Приведем примеры вопросов по повести А. С. Пушкина «Пиковая дама», которые предлагаются учащимся перед уроком: 1. Какую моральную оценку дает Пушкин своему герою? 2. Чем мотивируется поведение Германна (в социальном или психологическом плане)? 3. Как раскрыта в повести тема «личность и общество»? Что лежит в основе конфликта между героем и окружающими людьми? 4. С какой целью введены в повесть фантастические элементы? 5. Как относится Пушкин к наступлению буржуазного века? 6. Какова идея повести?22
Работа в классе строится с опорой на самостоятельные высказывания учащихся по этим вопросам. Вопросы проблемно-проверочного характера ставятся и с иной целью: для выяснения особенностей мышления учащихся. Например, после изучения творчества Лермонтова учащимся были предложены вопросы: 1. Что такое литературный тип? Показать на конкретном примере. 2. Что я узнал о русской действительности прошлого столетия из произведений Пушкина и Лермонтова? 3. Каковы основные особенности реализма Пушкина и Лермонтова? В чем вы видите сходство и в чем различие? Показать на конкретном примере. 4. Каков нравственный идеал Лермонтова? Что в этом идеале мне близко и понятно, а что нет? Здесь обращают на себя внимание вопросы, основанные на сопоставительном анализе, на обобщениях.
В ходе последующей работы вопросы проблемного характера усложняются. При изучении романа Достоевского «Преступление и наказание» учащимся предлагались следующие вопросы: 1. Какие события предшествуют преступлению и как они влияют на Раскольникова? 2. Сопоставьте Петербург Пушкина, Некрасова и Достоевского. 3. Сопоставьте ответы Чернышевского и Достоевского на вопрос «Что делать?». 4. Как и в каких сценах осуждается теория Раскольникова? 5. В чем заключается новаторство реалистической манеры Достоевского? 6. В чем состоит противоречивость художественного мира Достоевского? И другие.
Целенаправленная работа, идущая от формирования первоначальных обобщений о литературных фактах к концептуальному подходу в изучении литературы и использованию системы знаний по истории и теории литературы, — таков магистральный путь развития мышления старшеклассников.
Развитое логического мышления на уроках математики
Математика способствует развитию творческого мышления, заставляя учащихся искать решения нестандартных задач, размышлять над парадоксами, анализировать содержание условий теорем и сути их доказательств, изучать специфику работы творческой мысли выдающихся ученых. А. Я. Хинчин видит воспитательный эффект уроков математики в том, что специфическая для математики логическая строгость и стройность умозаключений призвана воспитывать в учащихся общую логическую культуру мышления, и основным моментом воспитательной функции математического образования он считает развитие у учащихся способностей к полноценности аргументации. В обыденной жизни и в ряде естественнонаучных дискуссий аргументацию почти не удается сделать исчерпывающей, в математике же дело обстоит иначе: «Здесь аргументация, не обладающая характером полной, абсолютной исчерпанности, оставляющая хотя бы малейшую возможность обоснованного возражения, беспощадно признается ошибочной и отбрасывается как лишенная какой бы то ни было силы... Изучая математику, школьник впервые в своей жизни встречает столь высокую требовательность к полноценности аргументации»23. Школьники приучаются к взаимной критике; ученик, который «отобьется» от всех возражений своих товарищей, почувствует, что именно логическая полноценность аргументации была тем оружием, которое дало ему эту победу. А раз почувствовав это, он неизбежно научится уважать это оружие и, даже находясь в других ситуациях (в споре с другими или в своем «одиноком мышлении»), будет искать точной, полноценной аргументации, что значительно повысит его логическую культуру. А. Я. Хинчин сформулировал некоторые конкретные требования, выполнение которых обеспечивает полноту аргументации. Среди них борьба против незаконных обобщений и необоснованных аналогий, борьба за полноту дизъюнкций, за полноту и выдержанность классификаций.
Требование полноты и выдержанности классификации
При построении классификаций необходимо соблюдать правила деления понятий: классификация должна проводиться по одному существенному основанию, члены классификации должны исключать друг друга, классификация должна быть полной. На уроках математики воспитывается потребность осуществлять правильные классификации.
Математический стиль мышления, по характеристике А. Я. Хинчина, определяется следующими особенностями: 1) доведенное до предела доминирование логической схемы рассуждения; 2) лаконизм, сознательное стремление всегда находить кратчайший из ведущих к данной цели логический путь; 3) четкая разбивка хода рассуждений на случаи и под случаи; 4) скрупулезная точность символики. Указанные черты стиля математического мышления способствуют поднятию общей культуры мышления школьников, развитию их интеллектуального потенциала. На уроках математики учащиеся оперируют всеми формами мышления: понятиями, суждениями, умозаключениями. Чаще всего учащиеся пользуются такими видами дедуктивного умозаключения, как категорический силлогизм, энтимема, условно-категорические и разделительно-категорические умозаключения, полисиллогизмы, сориты, непосредственные умозаключения (превращение, обращение, противопоставление предикату), дилеммы.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|