Сделай Сам Свою Работу на 5

Основные расчетные формулы.





№ позиций Наименование и обозначения измеряемых и вычисляемых величин Ед. изм. Рез. измерений и вычислений
Ламин. режим Турбул. режим
Опыт 1 Опыт 2 Опыт 3 Опыт 4
Объём воды в мерном сосуде см3        
Время наполнения объёма с        
Расход воды см3        
Внутренний диаметр стеклянной трубы см        
Площадь попереч. сечения трубы см2        
Средняя скорость движения воды см/с        
Температура воды        
Кинематический коэффициент вязкости воды (по справочнику) см2        
Число Рейнольдса -        
Критическое число (по справочнику) -        

       
 
Рис. 3.1 Диаграмма уравнения Д.Бернулли для струйки реальной жидкости Рис. 3.2 К измерению скоростного напора v2/2g   С энергетической точки зрения слагаемые уравнения (3.1) представляют собой разновидности удельной энергии а именно: Z - удельная потенциальная энергия положения жидкости в рассматриваемом сечении струйки; P/rg - удельная потенциальная, энергия. давления; U2/2g - удельная кинетическая энергия; - полная удельная энергия; - удельная потенциальная энергия; h`w1-2 - потеря полной удельной энергии струйки, т.е. часть ее, затраченная на преодоление работы сил внутреннего трения, обусловленного вязкостью жидкости. Удельной энергией называется энергия, приходящаяся на единицу веса жидкости. Величины слагаемых уравнения (3.1) могут быть определены опытным путем следующим образом:
 
   

z - геометрическим нивелированием, или же измерением линейкой p/rg - с помощью пьезометрической трубки (пьезометра); U2/2g - по разности отметок уровней жидкости в скоростной и пьезометрической трубках, подключенных к рассматриваемой точке живого сечения. подключенных к сечениям I-I и II-II (см. рис. 3.2) Скоростная трубка (см. рис. 7) представляет собой трубку, верхний конец которой открыт в атмосферу, а нижний изогнут навстречу скорости и в рассматриваемой сечения струйки ( рис. 3.2) h`w1-2 - по разности отметок уровней воды в скоростных трубках, точке потока жидкости. Благодаря этому у входа в изогнутый конец скоростной трубки кинетическая энергия частицы жидкости преобразуется в потенциальную энергию давления столба жидкости высотой hu=U2/2g. Поскольку срез нижнего конца скоростной трубки перпендикулярен вектору скорости, а срез нижнего конца пьезометра параллелен (см. рис.3.2), уровень жидкости в скоростной трубке всегда устанавливается выше, чем в пьезометре, на величину U2/2g.    





9. Открыть кран 13 на винипластовой трубе 2 так, чтобы разность показаний пьезометров 12 составляла не более 0,3 см и измерить расход воды и ее температуру. Результаты измерений записать в табл.1.5. 10. Сделать ещё девять аналогичных опытов, увеличивая в каждом после дующем опыте открытие крана 13 так, чтобы разность показаний пьезометров 12 (потеря напора по длине ) при этом возрастала примерно в 1,5…1,6 раза. Результаты измерений записать в таблицу 1.5. 11. Выполнить все вычисления, предусмотренные таблицами 1.4 и 1.5. 1. Построить в масштабе по данным таблицы 1.5 график (см. рис. 1.8) и определить с его помощью критическую скорость , а через неё и , а также показатели степени и и коэффициенты пропорциональности и . 1. Назовите режимы движения жидкости и укажите их характерные особенности. 2. Поясните, что такое критерий Рейнольдса, и назовите факторы, от которых он зависит. 3. Поясните, что такое критическое число Рейнольдса? 4. Поясните, каким образом при гидравлических расчётах определяют режим движения жидкости и, с какой целью? 5. Поясните, что такое критическая скорость, от каких факторов она зависит и как её определяют? 6. Напишите и поясните аналитические зависимости потерь напора по длине от средней скорости потока при ламинарном и турбулентном режимах движения жидкости. 7. Изобразите график зависимости потерь напора по длине от средней скорости ( в логарифмических координатах) и дайте пояснения к нему.    

жидкости Температура воды в баке 3 измеряется термометром 8. Регулирование расхода воды, а следовательно и средней скорости ее движения в трубах 1 и 2, осуществляется кранами соответственно 14 и 13. На винипластовой трубе 2 имеются пьезометры 12 для определения потерь напора по длине he (по разности их показаний).   Порядок выполнения работ и обработка опытных данных 1. Открыть вентиль 5 на трубопроводе 4 и наполнить водой бак 3 настолько, чтобы переливное устройство 6 начало работать, после чего вентиль 5 прикрыть. 2. Открыть незначительно кран 14 на стеклянной трубе 1 ,чтобы скорость движения воды в ней была небольшой (вода из трубы 1 должна течь тонкой струйкой). 3. Приоткрыть краник 10 на трубке 9 и подать из емкости 11 в трубу 1 небольшое количество раствора красителя, чтобы окрашенная струйка воды представляла собой отчетливо выраженную нить по всей длине трубы. 4. Измерять о помощью мерного сосуда 16 и секундомера 15 расход воды Q в трубе. При этом измеряемый объем воды в сосуде 16 должен быть также, чтобы время наполнения составляло не менее 20…30 секунд. 5. Измерить температуру воды в баке 3 термометром 8. 6. Результаты измерений записать в табл.4.1. 7. Увеличить открытием крана 14 скорость движения воды в трубе 1, но так, чтобы окрашенная струйка жидкости сохранялась, т.е. чтобы режим остался ламинарным, и выполнив те же измерения, что и в первом опыте, записать их результаты в табл.4.1. 8. Дальнейшим увеличением открытия крана 14 создать в трубе 1 турбулентный режим (об этом будет свидетельствовать интенсивное перемешивание с водой раствора красителя, подачу которого следует увеличить, чтобы эффект был ярче) и выполнить третий и четвертый опыты так, как описано выше. После чего закрыть краник 10 и кран 14. Результаты измерений записать в табл.1.4.



       
 
 
 
   

  Рис. 4.2 Схема устройства для изучения режимов движения


жидкости в круглом трубопроводе при напорном движении достаточно вычислить по формуле (4.2) число Рейнольдса и сравнить его с критическим. Знание режима, движения жидкости необходимо для правильной оценки потерь напора при гидравлических расчетах. Дело в том, что, как показывают опыты в круглых трубах при напорном равномерном движении (результаты их представлены на рис. 9. в виде графика зависимости потерь напора по длине he от средней скорости ) При ламинарном режиме потери напора he пропорциональны средней скорости в первой степени, а при турбулентном - в степени 1,75 <m>2,0. Заметим, что с помощью этого графика определяют величину критической скорости кр, а через нее - и критическое число Рейнольдса по формуле (4.1). Описание установки (рис 4.2.) включает в себя две расположенные горизонтально трубы: стеклянную 1 (d=1,6 cм) и винипластовую 2 (d=0,9 см), в которых и изучается движение воды при различных режимах, напорный бак 3, емкость 11 с раствором красителя, подаваемого открытием краника 10 по трубке 9 во входное сечение трубы 1. Для измерения расхода воды в трубах 1 и 2 служат мерная емкость 16 и секундомер 15. Вода в напорный бак 3 подается по питающему трубопроводу 4 открытием вентиля 5 из резервуара лаборатории. Для поддержания уровня воды в баке 3 во время опытов на постоянной отметке имеется переливное устройство 6, для контроля за уровнем воды служит электрический уровнемер 7 со световой сигнализацией.  

       
 
Прибор, объединяющий конструктивно пьезометрическую (П) и скоростную (С) трубки, называется трубкой Пито и широко применяется для измерения скорости движения жидкости . Для двух сечений потока реальной жидкости уравнение Д. Бернулли имеет вид: , (3.2) где скоростной напор, отвечающий средней скорости потока жидкости в рассматриваемом живом сечении (здесь Q, - расход потока жидкости, w - площадь живого сечения потока); hw1-2 - потеря полного напора (полной удельной энергии) на преодоление работы сил внутреннего и внешнего трения на пути между живыми сечениями потока жидкости I-I и II-II; a - коэффициент Кориолиса (корректив кинетической энергии), учитывающий неравномерность распределения местных скоростей по живому сечению потока, обусловленную вязкостью жидкости. Величина a зависит от режима течения жидкости, а также от вида движения. Так, при равномерном движении для ламинарного режима a=2,0, а для турбулентного - a=1,05…1,15. Слагаемые уравнений (3.1) и (3.2) в различных живых сечениях можно изображать графически в виде диаграммы уравнения Д. Бернулли (графика напоров), см. рис.1.5, дающей наглядное представление о перераспределении по пути движения жидкости потенциальной и кинетической энергии, а также о характере убывания полной энергии. 3.Описание установки.Установка (рис.3.3) представляют собой трубопровод 2 переменного сечения с напорным баком 1,
 
   

Рис. 4.1 График зависимости потерь напора по длине hl от средней скорости v в логарифмической форме Из изложенного следует, что для определения режима движения
вода в который подается по питающему трубопроводу 8 открытием вентиля 9. Бак 1 снабжен переливным устройством 10 для поддержания уровня воды на постоянной отметке, чтобы обеспечить в трубопроводе 2 установившееся движение жидкости. К сечениям I-I…II-II трубопровода 2 подключены пьезометры 3 и скоростные трубки 4 для измерения величин p/rg и U2/2g. Величина расхода воды в трубопроводе 2 регулируется вентилем 5. Для измерения расхода воды имеются мерный бак 6 и секундомер 7.   3. Порядок выполнения работы и обработка опытных данных. 1. При закрытом вентиле 5 открыть вентиль 9 для заполнения бака 1 и трубопровода 2 водой. При этом следует обратить внимание на уровни воды в пьезометрических 3 и скоростных трубках 4. Эти уровни при отсутствии воздуха в системе должны быть на одной отметке. 2. Открыть вентиль 5 так, чтобы трубопровод 2 работал полным сечением, а уровень воды в баке постоянным. 3. Измерить с помощью бака 6 и секундомера 7 расход воды. Затем линейкой измерить геометрические высоты z центров тяжести сечений I-I…II-II относительно плоскости сравнения 0-0, отмеченной на установке. 4. Далее, определить по шкалам отметки уровней воды в пьезометрах и скоростных трубках в сечениях I-I…II-II. Результаты всех измерений записать в таблицу 3.1. Затем выполнить все вычисления, предусмотренные табл. 3.1, и построить в масштабе по полученным данным линии полного напора и пьезометрическую, так, как показано на рис. 3.1. 5. Дать заключение по результатам работы.   4.Основные контрольные вопросы 1. Поясните геометрический смысл слагаемых уравнения Д. Бернулли. 2. Поясните энергетический смысл слагаемых уравнения Д. Бернулли. Как называется коэффициент a, входящий в уравнение Д. Бернулли для потока реальной жидкости, что он учитывает и


движения. При этом окрашенные струйки жидкости не перемешиваются, сохраняясь по всей длине потока, т.е. движение жидкости при ламинарном режиме является струйчатым, перемешивание частиц жидкости отсутствует. Турбулентный режим наблюдается при значительных скоростях и характеризуется интенсивным перемешиванием частиц жидкости, что обуславливает пульсацию скоростей и давления, Средняя скорость потока, при которой происходит смена режима движения жидкости, называется критической ( кр). Величина ее, как показывают опыты в трубопроводах круглого сечения, зависит от рода жидкости, характеризуемого динамической вязкостью m, и плотностью, а также от диаметра трубопровода d. Одновременно опытами установлено, что величина безразмерного алгебраического комплекса, отвечающей критической скорости кр, (4.1) от m, r и d не зависит. Reкр(d)=2320 называется критическим числом Рейнольдса. Устойчивый ламинарный режим наблюдается при значениях числа Рейнольдса , а турбулентный – при Re(d)>Reкр(d). Таким образом, число Рейнольдса (4.2) является критерием, позволяющим судить о режиме движения жидкости в круглой трубе, работающей полным сечением. Величину u=m/r, входящую в формулу (4.1) и (4.2), называют кинематическим коэффициентом вязкости жидкости.

       
 

3.от чего зависит его величина?

4. Объясните, что обусловлены потери полного напора и каков их энергетический смысл?

5. Поясните, что понимают под термином "удельная энергия"?

6. Объясните термины "местная скорость" и "средняя скорость" и укажите, как определяют эти скорости?

7. Поясните, что такое скоростная трубка и трубка Пито?

8. Поясните, что такое линия полного напора и пьезометрическая линия, что будут представлять собой эти линии при равномерном движении реальной жидкости?

9. Что понимают под термином «живое сечение потока жидкости»?

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.