Сделай Сам Свою Работу на 5

Безвредность отсутствия веса





А не отразится ли полное отсутствие тяжести на отправлениях человеческого организма? К счастью, можно думать, что нет. Дыхание, кровообращение и все другие функции почти совершенно не зависят от тяжести; это видно хотя бы уже по той легкости, с какой мы обычно меняем вертикальное положение своего тела на горизонтальное. Если бы отсутствие веса было смертельно, мы умирали бы при каждом прыжке, так как, падая, мы на мгновение лишаемся веса и уподобляемся пассажирам небесного корабля: вес есть давление на опору, а при свободном падении тело не имеет опоры — поэтому оно не имеет и веса. Путешествие по океану вселенной, если только оно благополучно началось, будет, во всяком случае, менее опасно для здоровья пассажиров, чем плавание по водяному океану, сопряженное с морской болезнью.
Все эти житейские неудобства — курьезные, необычайные, неожиданные, но по существу безвредные и невинные, — заставят будущих моряков вселенной отрешиться от многих глубоко укоренившихся привычек. Едва ли, однако, кто-нибудь откажется из-за этого совершить путешествие в таинственные глубины мироздания. Люди терпели более серьезные лишения, чтобы изучить нашу маленькую Землю, и, конечно, не остановятся перед ними, когда дело будет идти об исследовании вселенной.




11. Заключение

 

Никогда не говори „никогда".

(Старинная пословица).



Итак, если суждено человечеству когда-нибудь вступить в прямое сообщение с другими планетами, включить их в круг своего непосредственного изучения, быть-может, даже колонизовать их или приобщить к сфере добывающей промышленности, — словом, если земному человечеству предстоит вступить в новый „вселенский" период своей истории — то осуществится это, всего вероятнее, при помощи исполинских ракет и вообще реактивных приборов. Это единственный намечающийся в настоящее время путь к практическому разрешению проблемы межпланетных путешествий.
Гений Ньютона открыл человечеству нерушимый закон действия могучей силы, которая извечно приковывает нас к Земле. Но тот же гений провозгласил и другой закон "природы, опираясь на который потомки наши когда-нибудь свергнут иго тяжести и вырвутся из земного плена на простор вселенной, в необъятный мир миров.



ПРИБАВЛЕНИЯ

К главе II
1. Силы тяготения

Приведенные в начале главы II примеры действия силы тяготения могут быть проверены несложными расчетами, основанными, на законе Ньютона и элементах механики. Напомним сначала, что в механике за единицу измерения силы принята сила, которая, будучи приложена к свободному телу в 1 грамм, ежесекундно увеличивает его скорость на 1 сантиметр. Эта сила называется диной. Так как сила земного притяжения ежесекундно увеличивает скорость свободно падающего грамма почти на 1.000 сантиметров (10 метров), то сила, с какой притягивается к Земле 1 грамм, больше „дины" в 1.000 раз, т. е. равна (почти) 1.000 динам. Другими словами: вес гирьки в 1 грамм (сила ее притяжения к Земле) равен 1.000 динам. Это дает нам представление о величине дины в единицах веса: дина почти равна 1.000-й доле грамма.
Далее: точными измерениями установлено, что два шарика, по 1 грамму каждый, расстояние между центрами которых равно 1 сантиметру, притягиваются между собою с силою в одну 15-миллионную долю дины, Эту величину часто называют „постоянной тяготения".
Зная это, уже не трудно, пользуясь законом Ньютона, вычислить силу взаимного притяжения двух человеческих тел, разделенных промежутком в 1 сажень (2 метра, или 200 см.). Принимая вес человеческого тела в 4 пуда, или 65 килограммов (65.000 граммов), и имея в виду, что взаимное притяжение прямо пропорционально произведению масс и обратно пропорционально квадрату расстояния (закон Ньютона), — имеем для силы взаимного притяжения



Итак, два человеческих тела притягиваются взаимно с силою 0,007 дины (это менее 100-й доли дины, т. е. менее 100-й доли миллиграмма).
Чтобы вычислить, какой путь пройдут оба тела в течение часа под влиянием этой силы, мы воспользуемся формулой:

где t — число секунд, и а — ускорение, т. е. сила (0,007 дины), деленная на массу (65000 гр.). Следовательно, каждое тело пройдет в 3.600 секунд:

А оба тела сблизятся на 0,7 сант. + 0,7 сант.= 1,4 сант.
Таким же образом может быть вычислена сила взаимного притяжения и двух дредноутов, разделенных расстоянием в 1 километр. Масса каждого корабля — 25.000 тонн = 25.000.000 килогр. = 25.000.000.000 граммов; расстояние 1 килом. =100.000 сант. Поэтому взаимное притяжение равно

Так как 1.000 дин = 1 грамму, а грамм — около ¼ золотника, то 4.100 дин почти равно 1 золотнику.
Величина сближения кораблей под действием этой силы в течение первого часа равна

Сложнее вычислить время обращения тяготеющих тел одного вокруг другого (точнее — вокруг их общего центра тяжести), но и этот расчет может быть выполнен элементарным приемом. Вернемся к примеру двух человеческих тел и допустим, что эти тела представляют собою систему обращающихся тел. Массы их равны между собою, а потому оба тела должны обращаться вокруг точки, расположенной в середине между ними, т. е., принимая орбиту за круг, имеем, что радиус ее = 100 сант. Величина центростремительной силы кругового движения равна, как известно из механики , где m — масса, v — скорость, R — радиус круга. Скорость v можно выразить через длину орбиты 2πR, деленную на продолжительность оборота t, т.-е. через . Следовательно,

С другой стороны, центростремительная сила должна быть равна силе взаимного притяжения обращающихся тел — иначе кругового движения не могло бы быть. Эта сила выражается формулой

где k — „постоянная тяготения", т-е. дины.
Приравнивая оба выражения:

определяем из этого равенства величину t, т.-е. продолжительность обращения:

откуда

Подставляя для нашего случая вместо R-100 см., m — 65.000 и зная, что π = 3,14,

имеем:

Следовательно, время обращения двух человеческих тел, кружащихся под действием силы взаимного тяготения по круговой орбите с диаметром 2 метра, равно 190.284 сек., или 53,6 часа (около двух суток).
Как вычислить время взаимного падения тяготеющих друг к другу тел, — показано далее, в статье „Падение в мировом пространстве".
В заключение приводим интересный отрывок, характеризующий силу тяготения и заимствуемый у известного английского физика О. Лоджа:
„Силы тяготения между небольшими телами незначительны и далеко превосходятся магнитными. Действительно, притяжение между телами определенной малости может быть более чем уравновешено даже давлением, возникающим вследствие их взаимного излучения, несмотря на то, что это давление почти бесконечно мало. Отсюда следует, что достаточно малые тела любой температуры отталкивают друг друга (если только они не заключены в оболочку постоянной температуры, где лучистое давление на них со всех сторон одинаково).
Размеры, при которых лучистое отталкивание перевешивает тяготение, в случае двух равных шаров, зависят от температуры шаров и от их плотности; по данным проф. Пойтинга, при обыкновенной, привычной для нас температуре— скажем, при 16° Ц. — равенство этих двух сил для двух деревянных шаров, расположенных в пространстве, достигается тогда, когда каждый шар имеет диаметр приблизительно в один фут. Для тел меньших размеров или более горячих лучистое отталкивание пересиливает взаимное тяготение; отталкивание это возрастает пропорционально четвертой степени абсолютной температуры тел.
Притягательная сила тяготения между молекулами чрезвычайно мала; между двумя атомами или двумя электронами она настолько мала, что ею можно пренебречь, хотя бы расстояние между ними и не выходило из пределов размера молекулы.
А между тем, от совокупного притяжения мириад таких тел происходит результирующая сила тяготения, заметная на расстояниях в миллионы миль. Сила эта не только заметна, но величину ее нужно признать прямо-таки ужасающей.
Когда дело идет о телах астрономических размеров, сила тяготения перевешивает все другие силы; и все электрические и магнитные притяжения в сравнении с нею падают до полного ничтожества".

К главе IV
2. Теории тяготения

„Все сделанные попытки объяснить силу тяжести, как результат движения в среде, находящейся между телами, наталкиваются на то затруднение, что тяжесть беспрепятственно проходит сквозь тела, как бы велики и плотны они ни были, — пишет Аррениус. — Так, например, притяжение Солнца действует на частицу, лежащую в центре Земли, сквозь все промежуточные слои. А так как действие силы должно состоять в каком-нибудь изменении движения тела, подвергающегося ее влиянию, то необходимо принять, что частица, лежащая позади другой, подверженной той же силе, по крайней мере отчасти закрыта от этого влияния. Поэтому на соединительной линии между частицею в центре Земли и любою частицею на Солнце не должна была бы лежать ни одна из бесконечно большого числа тяжелых частиц верхних слоев Земли. Значит, необходимо предположить, что частицы, на которые действует сила тяжести, имеют бесконечно малое протяжение и должны считаться математическими точками. Физически этот взгляд немыслим. Точно также невозможно представить себе, чтобы математические точки могли возмущать движение. Удивительно, что та самая сила природы, которую мы точнее всего можем проследить посредством вычисления, в физическом отношении представляет величайшую загадку".

Совершенно особым образом подходит к вопросу новейшая (1915 г.) теория тяготения, разработанная А. Эйнштейном, которая вовсе не рассматривает тяготение как некоторую „силу". Исходным пунктом теории тяготения Эйнштейна являются следующие соображения:
„Вообразим себе систему в виде большого ящика или комнаты и положим сперва, что она находится в гравитационном поле, т. е. в такой части пространства, в которой действуют силы тяготения, и что она в этом пространстве неподвижна. В виде примера представим себе, что она находится на земной поверхности, где гравитация, т. е. сила тяжести, действует вертикально вниз от потолка к полу комнаты. Наблюдатели, находящиеся в этой системе, заключают следующее. Тела, спокойно лежащие на полу, на столе и т. д., производят давление на тела, находящиеся под ними. Если взять в руку какое-либо тело, напр., свинцовый шарик, и отпустить его, то он начинает падать вертикально вниз с ускорением, которое мы обозначим буквой g, и которое оказывается независящим от рода тела, если исключить сопротивление воздуха. Если шарик бросить в горизонтальном направлении, то он начнет двигаться по кривой линии (по параболе) вниз, и на некотором расстоянии от наблюдателя достигнет пола. В обоих случаях мы имеем дело с весомой массой взятого тела.
„Теперь рассмотрим другой случай. Та же система находится в пространстве, в которого нет никакого гравитационного поля, но сама система движется с ускорением g по направлению, обратному тому направлению, в котором раньше действовала гравитация, т. е. [движется] по направлению от пола к потолку. Наблюдатель, находящийся внутри системы, замечает следующее. Все тела, спокойно лежащие на неподвижных предметах (пол, стол, рука), производят давление на свои опоры; такое же давление производит и сам наблюдатель хотя бы на пол ящика. Если наблюдатель выпустит из рук какой-нибудь предмет, напр., свинцовый шарик, то он увидит, что шарик движется по направлению к полу с ускорением g, между тем как наблюдателю, находящемуся вне ящика, тот же шарик представится неподвижным. Если наблюдатель бросит шарик по направлению, параллельному полу, то заметит, что шарик движется по кривой линии и на некотором расстоянии ударяется об пол. Наблюдателю, находящемуся вне ящика, представится, что шарик движется прямолинейно и равномерно по направлению, параллельному полу. Ясно, что для этого наблюдателя движение происходит по инерции и зависит от инертной массы шарика.
„Сравнивая явления, наблюдаемые в указанных двух случаях внутри системы, мы видим, что они вполне тождественны, хотя в первом случае они зависят от весомой массы тел, а во втором случае — от массы инертной. Наблюдатель, находящийся внутри ящика, не имеет возможности отличить эти два случая друг от друга, и он, например, во втором случае может предположить, что внутри ящика действует гравитационное поле. Все изложенное приводит нас к результату огромной важности. Наблюдатель, находящийся внутри системы, не имеет возможности отличить друг от друга прямолинейного равномерно-ускоренного движения системы от наличности внутри системы гравитационного поля. Все явления происходят внутри системы совершенно одинаково в обоих случаях. Мы можем сказать, что гравитационное поле и равноускоренное прямолинейное движение системы друг другу эквивалентны. Для Эйнштейна эквивалентность настолько полна, что он вообще всякое ускорение системы отождествляет с возникновением гравитационного поля".
Исходя из этого, Эйнштейн развивает стройную теорию тяготения, принципиально отличную от всех прежде предлагавшихся и уже получившую частичное подтверждение согласием ее неожиданных следствий с наблюдениями.
К сожалению, эта теория не может быть общепонятно изложена.

К главе IV
3. Поглощение тяготения

Вопрос о существовании такого вещества, которое было бы вполне или отчасти непроницаемо для тяготения (т. е. обладало бы свойствами фантастического „кеворита", упоминаемого в романе Уэльса), служил неоднократно предметом научного рассмотрения. До самого последнего времени опыты, производившиеся с целью обнаружить хотя бы следы подробного поглощения тяготения, не давали положительных результатов. Лишь в 1920 г. удалось, по-видимому, получить результат, который указывает на некоторое ослабление силы тяготения, при действии ее через тела большой плотности (ртуть, свинец). При этих опытах свинцовый шар, весом около 1300 кг, окружался 100 килогр. ртути так, чтобы она не касалась шара: при этом наблюдалось уменьшение веса свинцового шара на 2 миллионные доли грамма.
В другой серии опытов того же ученого тяготение действовало через толстый слой свинца (именно, через призму весом 600 пудов, при этом вес шара уменьшался на 2 миллионных грамма).
Однако, интересные данные этих опытов далеко нельзя считать решающими; они нуждаются в тщательной проверке новыми опытами, с целью установить, действительно ли уменьшение веса в данном случае обусловлено поглощением тяготения, а не вызывается какими-либо другими причинами.

К главе VII
4. Падение в мировом пространстве

Полет пушечного ядра Жюля Верна на Луну можно рассматривать как случай падения тела в мировом пространстве под влиянием силы тяготения. Поэтому, прежде чем рассматривать условия его полета, полезно рассмотреть такую, например, задачу из области небесной механики:
Во сколько времени упал бы на Солнце земной шар, если бы по какой-либо причине прекратилось его движение по орбите?
Задачи подобного рода легко разрешаются на основании третьего закона Кеплера: квадраты времен обращения (планет и комет) относятся как кубы их средних расстояний от Солнца. В нашем случае мы можем земной шар, летящий прямо к Солнцу, уподобить воображаемой комете, движущейся по сильно вытянутому и сжатому эллипсу, крайние точки которого расположены: одна — близ земной орбиты, другая — в центре Солнца. Среднее расстояние такой кометы от Солнца, очевидно, вдвое меньше среднего расстояния Земли. Вычислим, каков должен был бы быть период обращения этой воображаемой кометы. Составим на основании третьего закона Кеплера, пропорцию:

Период обращения Земли равен 365 сутк.; среднее расстояние ее от Солнца примем за единицу, и тогда ср. расст. кометы выразится ½. Пропорция принимает вид:

откуда

или:

Но нас интересует не полный период обращения этой воображаемой кометы, а половина периода, т.-е. продолжительность полета в один конец — от земной орбиты до Солнца: это и будет искомое время падения Земли на Солнце. Оно равно

Итак, чтобы узнать, во сколько времени Земля упала бы на Солнце, нужно продолжительность года разделить на √32, т.-е. на 5,6.
Легко видеть, что полученная простая формула применима не к одной только Земле, но и ко всякой другой планете и даже ко всякому спутнику. Иначе говоря: чтобы узнать, во сколько времени планета или спутник упадут на свое центральное светило, нужно период их обращения разделить, на √32, т.-е. на 5,6. Меркурий, обращающийся в 88 дней, упал бы на Солнце в 15½ дней; Нептун, период обращения которого равняется 30 нашим годам, — падал бы на Солнце в течение 5½ лет. А Луна упала бы на Землю в 27,3:5,6, т.-е… почти ровно в 5 дней. И не только Луна, но и всякое вообще тело, находящееся от нас на расстоянии Луны, падало бы на Землю в течение 5 дней (если только ему не сообщена начальная скорость, а падает оно, подчиняясь лишь действию одного земного притяжения). Здесь мы вплотную подходим к задаче Жюля Верна. Легко понять, что столько же времени, 5 дней, должно лететь на Луну всякое тело, брошенное, наоборот, с Земли на Луну с такою скоростью, чтобы как-раз достичь расстояния Луны. Значит, алюминиевое ядро Жюля Верна должно было бы лететь 5 суток, если бы его хотели закинуть на расстояние Луны.
Однако, члены Пушечного Клуба рассчитывали закинуть ядро не прямо до Луны, а только до той точки между Землей и Луной, где сила притяжения обоих светил уравновешивается: отсюда ядро под действием своей тяжести само уже упало бы на Луну, притягиваемое ею. Это „нейтральная" точка находится на 0,9 расстояния от Земли.
Вычисление, следовательно, несколько усложняется. Во-первых, нужно вычислить, во сколько времени ядро долетело бы до 0,9 расстояния между Землей и Луной, или, — что то же самое, — во сколько времени тело с этого расстояния упало бы на Землю; во-вторых, надо определить продолжительность падения тела от этой нейтральной точки до Луны.
Для решения первой задачи представим себе, что на 0,9 расстояния от Земли до Луны обращается вокруг нашей планеты небесное тело, и вычислим период обращения этого воображаемого спутника Земли. Обозначив неизвестный период обращения через х, составляем, на основании третьего Кеплерова закона, пропорцию:

отсюда искомый период обращения = 27,3√0,93= 23,3. Разделив этот период на √32, т.-е. на 5,6, мы, согласно выведенной ранее формуле, получим время перелета ядра от Земли до нейтральной точки: 23,3:5,6 = 4,1 суток.
Вторую задачу решаем сходным образом. Чтобы вычислить, во сколько времени ядро упало бы с расстояния нейтральной точки до Луны, нужно сначала определить, во сколько времени ядро, находясь на том же расстоянии от Луны, совершило бы вокруг нее полный оборот. Радиус орбиты этого воображаемого спутника Луны равен 0,1 радиуса лунной орбиты, а масса центрального светила (в данном случае Луны) — в 81 раз меньше массы Земли. Если бы масса Луны равнялась земной, то спутник, обращаясь на среднем расстоянии вдесятеро меньшем, чем лунное, совершал бы полный оборот в период y, легко вычисляемый по закону Кеплера:

Но так как масса, а следовательно и притягательное действие центрального светила в данном случае в 81 раз меньше, чем в системе Земли, то время обращения ядра-спутника будет дольше. Во сколько раз? Из механики мы знаем, что центростремительное ускорение пропорционально квадрату скорости. Здесь это ускорение (производимое притяжением Луны) меньше в 81 раз, — следовательно, скорость движения ядра по орбите должна быть меньше в √81, т.-е. в 9 раз. Другими словами, ядро в роли лунного спутника должно обегать кругом Луны в 9 раз медленнее, чем оно обходило бы, на таком же расстоянии, вокруг Земли. Значит, искомое время обращения равняется: 0,273√10 × 9 = 7,77 суток.
Чтобы получить продолжительность падения ядра от нейтральной точки до Луны, нужно, как мы уже знаем, найденный сейчас период его обращения (7,77) разделить на √32, т.-е. на 5,6; получим 1,4 суток.
Итак, весь перелет пушечного снаряда от Земли до Луны должен был бы длиться 4,1+1,4 сут. = 5,5 сут.
Это, конечно, не вполне точный результат: здесь не принято во внимание то обстоятельство, что и при полете от Земли до нейтральной точки ядро подвергается притягательному действию Луны, ускоряющему его движение; с другой стороны, при падении от этой точки на Луну оно испытывает на себе замедляющее действие земного притяжения. Последнее действие должно быть особенно заметно и, как показывает более точное вычисление, почти вдвое увеличило бы продолжительность падения ядра от нейтральной точки до Луны. Благодаря этим поправкам, общая продолжительность перелета снаряда от Земли до Луны с 5½ суток возрастает до 6½ суток.
В романе продолжительность перелета определена „астрономами Кембриджской обсерватории" в 97 час. 13 мин. 20 сек., т.-е. в 4 с небольшим суток, вместо 5½ и даже 6½ суток. Жюль Верн ошибся на двое суток. По-видимому, французский романист, или лицо, производившее для него расчеты, преуменьшили время падения ядра от нейтральной точки до Луны: в романе оно определено всего в 13 час. 53 мин., между тем как, вследствие слабости лунного притяжения, это падение должно было совершаться гораздо медленнее и занять около 60 часов.
В заключение, рассмотрим случай взаимного падения друг на друга тел равной массы. Строго говоря, мы имеем взаимное падение во всех случаях: когда ядро падает на Луну, или камень на Землю, то и Луна одновременно падает на ядро, а Земля на камень. Но скорости перемещения огромных масс Луны и Земли в этих случаях так ничтожны, что ими пренебрегают: они меньше скорости падения ядра или камня во столько же раз, во сколько масса Луны или Земли больше массы или камня. Иное дело, когда массы тяготеющих друг к другу тел равны (или близки по величине): тогда скорости падающих друг на друга тел равны (или близки к равенству), и рассматривать процесс падения тел как процесс односторонний уже нельзя.
Итак, остановимся на примере взаимного падения двух звезд двойной звезды в случае равенства их масс. Установим зависимость между продолжительностью такого падения и периодом обращения звезд по их круговой орбите. Вообразим, что обе звезды, вместо того, чтобы обращаться по кругу радиуса В, движутся по весьма вытянутому эллипсу, „большая ось" которого совпадает с одним из диаметров круга. Среднее расстояние звезды, при таком движении, от общего центра тяжести системы (вокруг которого фактически совершается обращение) равно

Применяя к обеим парам третий закон Кеплера, имеем

Обозначив период кругового движения через t, имеем

или:

Но легко сообразить, что искомое время падения звезды от точки круговой орбиты до центра составляет ⅓ периода полного обращения по крайне вытянутому эллиптическому пути, — т.-е. искомое время падения =

Выше, на стр. 96-й, мы вычислили, что два человеческих тела должны были бы, обращаясь вокруг общего центра тяжести по круговой орбите диаметром 2 метра, совершать полный оборот в 53,6 часа. Разделив этот период на 11,28, получим продолжительность взаимного падения
53,6 час.: 11,28 = 4,75, т.-е. около 5 часов.
(Предоставляем читателю сделать подобный же расчет для случая двух дредноутов, рассмотренного в прибавлении 1).

К главе VII
5. Успехи современной артиллерии

Дальность полета ядер, извергаемых новейшими пушками (1922 г.), превзошла даже и те невероятные расстояния, которые преодолевались к концу мировой войны германской артиллерией (т.-е. 80—100 верст). Это стало возможным, главным образом, благодаря тому, что ядра с большою начальною скоростью закидываются на высоту, где сопротивление воздуха, вследствие его разреженности, весьма незначительно. Снаряд весом 100 килогр. (6 пудов), извергнутый с начальной скоростью 1400 метров (1⅓ версты), быстро проносится через низшие, сравнительно плотные, слои атмосферы и уже на высоте 30 километров попадает в область, где воздух раз в 80 реже, чем близ земной поверхности. Здесь сопротивление среды настолько незначительно, что ядро может пролететь большое расстояние без заметного уменьшения своей скорости.
По газетным сведениям, в Соединенных Штатах Америки уже сооружаются орудия с дальностью полета ядер 200–300 верст!
Надо упомянуть еще, что кроме взрывчатых веществ, существует и другое средство сообщить метаемому снаряду большую начальную скорость: выталкивание электромагнитными силами. Теоретически и лабораторно электромагнитные пушки вполне разработаны и оправдывают уже и в настоящее время возлагаемые на них надежды. Теоретики воздухоплавания не отрицают даже возможности полетов людей на таких аппаратах — т.-е. реального осуществления Жюль-Вернова ядра… „Электрические методы сообщения снаряду начальной скорости, достаточной не только для короткого полета, но даже для прохода весьма значительной дистанции, уже составляют столь крупный шаг вперед в технике аппаратов, основанных на принципе поддержания при помощи начальной скорости, что возможность осуществления полетов на таких аппаратах не может быть вполне отрицаема: необходимо разработать метод безопасного спуска таких снарядов и ограничить развитие внутри его температуры [вследствие трения о воздух] в допустимых для „человека пределах (А. Вегенер. „Самолет будущего", „Вестник Возд. Флота", 1922, № 13).

К главе VIII
6. Давление внутри пушечного ядра

Для читателей, которые пожелали бы проверить расчеты, упомянутые на стр. 65-й, приводим здесь эти несложные вычисления.
Для расчетов нам придется пользоваться лишь двумя формулами ускоренного движения, именно:
1) Скорость v в конце t-ой секунды равна at, где а — ускорение:
v = at.
2) Пространство S, пройденное в течение t секунд, определяется формулой:

По этим двум формулам легко определить (разумеется, только приблизительно) ускорение движения ядра, когда оно скользило в канале грандиозной Жюль-Верновой пушки.
Нам известна из романа длина пушки — 210 метров: это и есть пройденный телом путь S. Романист указывает и скорость ядра у выхода из орудия: 16.000 метров. Данные эти позволяют нам определить прежде всего величину t — продолжительность движения снаряда в канале орудия (рассматривая это движение, как равномерно-ускоренное). В самом деле:

Итак, оказывается, что ядро скользило внутри пушки всего 1/40 секунды.

Значит, ускорение ядра при движении в канале = 640.000 метров в секунду, т. е. в 64.000 раз больше ускорения силы земной тяжести!
Какой же длины должна быть пушка, чтобы это ускорение было всего в 20 раз больше ускорения тяжести (т.-е. равнялось. 200 метрам)?
Это задача, обратная той, которую мы только что решили. Данные: a = 200 метров; v= 11000 метров (при отсутствии сопротивления атмосферы такая скорость достаточна)..
Из формулы v = at имеем: 11000 = 200t, откуда t=55 секундам.
Из формулы

получаем, что длина пушки должна равняться

метров, т.-е. круглым. счетом около 300 верст.

К главе IX
7. Проект Кибальчича

„Когда я явился к Кибальчичу, — говорил судьям, его защитник, — меня прежде всего поразило, что он был занят совершенно иным делом, ничуть не касающимся настоящего процесса. Он был погружен в изыскание, которое он делал о каком-то воздухоплавательном снаряде; он жаждал, чтобы ему дали возможность написать свои математические изыскания об этом изобретении. Он их написал и представил по начальству".
Начальник жандармского управления, получив рукопись Кибальчича, передал ее в департамент полиции. Там решили, что „давать ее на рассмотрение ученых теперь едва ли своевременно и может вызвать только неуместные толки", — а потому проект был запечатан в конверт и подшит к делу. С 1882 г. по август 1917 г. пакет хранился нетронутым в секретных архивах департамента полиции. Вся история авиации — от первых попыток Райтов до мощных военных аэропланов — успела развиться, — а проект русского революционера, одна из самых смелых технических идей, какие когда-либо рождались в уме человека — лежал безвестно для мира в архивной пыли.
Ниже мы приводим извлечение из этой рукописи Кибальчича (помеченной 23 марта 1881 г.):

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.