Сделай Сам Свою Работу на 5

Изменения мембран и патология клетки





Клеточные мембраны, как известно, состоят из бислоя фосфолипидов, по обе стороны которого располагаются разнообразные мембранные белки. На внешней поверхности мембраны белковые молекулы несут полисахаридные ком­поненты (гликокаликс), которые содержат многочисленные поверхностные кле­точные антигены. Они играют важную роль в клеточном у.;чавании, формирова­нии клеточных стыков.

Изменения клеточных мембран.Среди них различают следующие [Авцын А. П., Шахламов В. А., 1979]: чрезмерное везикулообразование («минус-мембрана» — рис. 9); увеличение поверхности плазмолеммы клеток мембранами микропиноцитозных пузырьков («плюс-мембрана»); усиленный микроклазматоз и клазматоз («минус-мембрана»—см. рис. 9); образование цитоплазматических отростков из плазмолеммы клетки; образование пузырей на поверхности клетки; утолщение слоев мембраны; образование микропор; образование миелиноподобных структур из плазмолеммы и мембран органелл; слияние разнородных клеточных мембран; локальные разрушения мембран — «бреши» в плазмолемме; «штопка» локально разрушенной плазмолеммы мем­бранами микропиноцитозных везикул.



К патологии мембран клетки могут вести нарушения мембранного транс­порта, изменения проницаемости мембран, изменения коммуникации клеток и их

\V#f« " п. 1*»А iU


а»


'■ f

 


Рис. 9. Изменения мембран эндотелиоцитов. Усиленное везикулообразование и клазма­тоз. X 25 500.


Рис.10. Вакуолизация митохондрий в одном гепатоците (слева) и конденсация их в дру­гом (справа), х 16 000.

«узнавания», изменения подвижности мембран и формы клеток, нарушения синтеза и обмена мембран.

Нарушения мембранного транспорта. Процесс мембранного транспорта предполагает перенос ионов и других субстратов против градиента концентра­ции. Транспорт может быть активным, тогда он требует АТФ и «подвижности» транспортных белков в мембране, или пассивным посредством различных диффузионных и обменных процессов. Активный транспорт — это также функ­ция эпителиальных барьеров. Нарушения мембранного транспорта, ведущие к патологии клетки, хорошо прослежены при ишемии, которая приводит к пер­вичным изменениям митохондрий. В митохондриях резко падает эффективность окислительного фосфорилирования, они набухают, вначале увеличивается проницаемость их внутренней мембраны, в дальнейшем повреждение становится тотальным и необратимым (рис. 10).



Ишемическое повреждение митохондрий приводит к полому натрий-калие­вого АТФ-насоса, постепенному накапливанию в клетке натрия и потере ею калия. Нарушение натрий-калиевого обмена ведет к вытеснению кальция из митохондрий. В результате в цитоплазме повышается уровень ионизированного кальция и увеличивается связывание его с кальмодулином. С повышением содержания кальций-кальмодулиновых комплексов связан ряд изменений клетки: расхождение клеточных стыков, поглощение кальция митохондриями, изменение микротрубочек и микрофиламентов, активация фосфолипаз. Эндо-плазматическая сеть накапливает воду и ионы, следствием чего является расширение ее канальцев и цистерн, развитие гидропической дистрофии. Усиле­ние гликолиза сопровождается истощением гликогена, накоплением лактата и снижением клеточного рН. С этими изменениями связано нарушение структуры хроматина и уменьшение синтеза РНК. Необратимые ишемические повреждения клетки связаны с гидролизом мембран, особенно мембранных липидов, под действием фосфолипаз. Возникают и нарушения лизосомальных мембран с высвобождением гидролаз.


Изменения проницаемости мембран. Контроль мембранной проницаемости предполагает поддержание структуры как фосфолипидного бислоя мембраны с необходимым обменом и ресинтезом, так и соответствующих белковых кана­лов. Важная роль в осуществлении этого контроля принадлежит гликокаликсу и взаимодействию мембранных белков с цитоскелетом, а также гормонам, взаимодействующим с мембранными рецепторами. Изменения проницаемости могут быть тяжелыми (необратимыми) или поверхностными. Наиболее изучен­ной моделью изменения мембранной проницаемости является повреждение тяжелыми металлами (ртуть, уран). Тяжелые металлы, взаимодействуя с сульф-гидрильными группами мембранных белков, изменяют их конформацию и резко увеличивают проницаемость мембраны для натрия, калия, хлора, кальция и магния, что приводит к быстрому набуханию клеток, распаду их цитоскелета. Подобные изменения мембран отмечаются при повреждении их комплементом («болезни гиперчувствительности»). В мембранах образуются бреши, что сни­жает их сопротивление и резко увеличивает проницаемость.



Изменения коммуникации клеток и их «узнавания». Коммуникабельность клеток и опознавание «своих» и «чужих» — необходимое свойство клеточного кооперирования. Клеточное «общение» и «узнавание» подразумевают прежде всего различия во внешних поверхностях плазматической мембраны и мембран внутриклеточных органелл. Особый интерес в этом отношении представляет гликокаликс мембраны с поверхностными антигенами — маркерами определен­ного типа клеток.

Изменения клеточного «общения» и «узнавания» встречаются при тех патологических процессах (воспаление, регенерация, опухолевый рост), при которых поверхностные антигены могут изменяться, причем различия могут касаться как типа антигена, так и его «доступности» со стороны внеклеточного пространства. Показано, что при исчезновении характерных для данного типа клеток антигенов могут появляться «эмбриональные» и аномальные (например, карциноэмбриональный) антигены; изменения гликолипидов мембраны делают ее более доступной воздействию антител.

Коммуникабельность клеток определяется также состоянием клеточных стыков, которые могут повреждаться при различных патологических процессах и болезнях. В раковых клетках, например, найдена корреляция между измене­ниями клеточных стыков и нарушением межклеточных связей; в опухолях обнаружены аномальные клеточные соединения.

Изменения подвижности мембран и формы клеток. Различают два типа изменений, связанных с нарушением подвижности мембран: выпячивание мембраны наружу — экзотропия и внутрь цитоплазмы — эзотропия. При экзотропии мембрана, выпячивающаяся во внеклеточное пространство, образует окруженную мембраной цитоплазматическую структуру. При эзотро-пии появляется окруженная мембраной полость. Изменения формы клеток свя­заны не только с экзо- и эзотропией, но и с упрощением клеточной поверхности (потеря малых отростков подоцитов при нефротическом синдроме).

Нарушения синтеза и обмена мембран. Возможно усиление синтеза мембран (при воздействии ряда химических веществ на клетку) или его ослабление (снижение синтеза мембран щеточной каемки энтероцитов при угнетении мембранных ферментов). В равной мере возможно усиление обмена мембран (при стимуляции аутофагоцитоза) или его ослабле­ние (при лизосомных болезнях).

Эндоплазматическая сеть

Однозначные изменения гранулярной и агранулярной эндоплазматической сети могут отражать нарушения различных функций цитоплазмы и клетки.


Рис. 11. Гиперплазия гранулярной эндоплазматической сети, расширение ее цистерн, гиперплазия пластинчатого комплекса (плазматическая клетка), х 13 500.

Изменения гранулярной эндоплазматической сети и рибосом

Функции гранулярной эндоплазматической сети и рибосом сопряжены достаточно жестко, поэтому морфологические проявления их нарушений касаются, как правило, обеих органелл.

Изменения гранулярной эндоплазматической сети и рибосом могут быть представлены гиперплазией и атрофией, упрощением структуры, дезагрега­цией (диссоциацией) рибосом и полисом, образованием аномальных рибосо-мально-пластинчатых комплексов.

Гиперплазия гранулярной эндоплазматической сети и рибосом, т. е. уве­личение их количества, светооптически проявляется повышенной базофилией цитоплазмы, которая отражает объемную плотность рибосом и является пока­зателем интенсивности белкового синтеза в клетке. Электронно-микроскопи-чески в таких случаях можно судить о сопряжении синтеза и экскреции белка или отсутствии такого сопряжения. В интенсивно секретирующих и экскрети-рующих белок клетках (например, в активных фибробластах) цистерны грану­лярной эндоплазматической сети расширены и содержат мало электронно-плот­ного материала: отмечается гиперплазия как связанных с мембранами, так и свободных рибосом, образующих полисомы; пластинчатый комплекс (комп­лекс Гольджи), участвующий в экскреции синтезируемого белка, хорошо развит (рис. 11). В интенсивно секретирующих белок клетках с нарушенной его экскрецией в гиперплазированных расширенных цистернах эндоплазмати­ческой сети с обилием рибосом и полисом накапливается хлопьевидный элект­ронно-плотный материал (рис. 12), иногда происходит его кристаллизация; комплекс Гольджи в таких случаях развит плохо.

Атрофия гранулярной эндоплазматической сети, т. е. уменьшение ее разме­ров, светооптически представлена снижением или исчезновением базофилии цитоплазмы, а электронно-микроскопически — уменьшением размеров каналь­цев и объема сети, количества и размеров рибосом (рис. 13). Она отражает


Рис. 12. Конденсированный белковый секрет в эндоплазматической сети (плазматиче­ская клетка), х 13 500.

Рис. 13. Атрофия гранулярной и гиперплазия агранулярной эндоплазматической сети гепа-тоцитов. х 16 500.


снижение белково-синтетической функции клетки (белковый дефицит при голодании, болезнях печени; старение).

Упрощение структуры гранулярной эндоплазматической сети клеток сви­детельствует о недостаточной их дифференцировке, нередко встречается в клет­ках злокачественных опухолей.

Дезагрегация (диссоциация) рибосом и полисом, выражающаяся в нару­шениях рибосомально-мембранных взаимоотношений, «неорганизованной» ас­социации рибосом в полисомы, может быть выражением структурного упроще­ния эндоплазматической сети недифференцированной и опухолевой клетки. Но те же изменения наблюдаются и в дифференцированных клетках при кисло­родном голодании и дефиците белка в организме.

Образование аномальных рибосомально-пластинчатых комплексов являет­ся выражением субклеточной атипии и встречается при опухолях системы крови — гемобластозах (см. Опухоли системы крови).

Изменения агранулярной эндоплазматической сети

Агранулярная цитоплазматическая сеть может претерпевать ряд морфо­логических изменений, отражающих нарушения разнообразных функций этого органоида. Среди них главные — гиперплазия и атрофия.

Гиперплазия мембран эндоплазматической сети с расширением ее каналь­цев и систем (см. рис. 13) может отражать различные по интенсивности и разные по своей сути процессы. Во-первых, это усиление метаболической активности ряда веществ (белков, липидов, лекарственных средств). Во-вторых, это нару­шенный внутриклеточный транспорт метаболизируемых продуктов, которые накапливаются в расширенных канальцах и цистернах сети, при этом пластин­чатый комплекс редуцирован. В-третьих, это дефицит ферментов (ферменто-патия), ведущий к недостаточности специфических функций этого органоида. При нарушении внутриклеточного транспорта метаболизируемых продуктов и ферментопатии в расширенных цистернах эндоплазматической сети накап­ливаются белки и вода (гидропическая дистрофия) или липиды и липопротеиды (жировая дистрофия).

Атрофия, а в дальнейшем и редукция гладкой эндоплазматической сети возникают при остром или хроническом воздействии на клетку различных ядов и токсических веществ (рис. 14), а также при белковом голодании.

Эндоплазматическая сеть и система оксигеназ со смешанной функцией

Ряд чужеродных веществ, подвергающихся метаболизму в эндоплазмати­ческой сети, способен взаимодействовать с макромолекулами клетки, что ведет к ее повреждению. Катализаторами таких метаболических процессов в эндо­плазматической сети является группа родственных NADH- и Ог-зависимых ферментов. Это — монооксигеназы (гидроксилазы) или оксигеназы со смешан­ной функцией (ОСФ); терминальной оксигеназой этой системы является цито-хром — Р-450. Система ОСФ, связанная с цитохромом Р-450, найдена в эндо­плазматической сети клеток многих органов (печень, легкие, кишечник, кора надпочечников, семенники, кожа). Эта система может, помимо гидроксилиро-вания стероидов, утилизировать многие липофильные эндогенные (жирные кислоты) и экзогенные (лекарственные препараты, органические растворители, карциногены) вещества. Метаболизм чужеродных липофильных веществ тре­бует сложного взаимодействия ряда ферментативных процессов, в которых система ОСФ — цитохром Р-450 занимает центральное место. Такой метабо­лизм не всегда ведет к инактивации метаболических веществ. Возможно


Рис.14. Атрофия гладкой эндоплазматической сети гепатоцита. X 18 000.

образование реакционноспособных оксигенированных продуктов, которые мо­гут взаимодействовать с нуклеиновыми кислотами и белками клетки, что ведет к ее повреждению. Основной механизм такого повреждения — это генерация супероксидных радикалов О^ и перекиси водорода, индуцирующих переокисле­ние липидов.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.