Сделай Сам Свою Работу на 5

Решение рациональных уравнений методом введения новой переменной





Метод введения новой переменной вам знаком, мы не раз им пользовались. Покажем на примерах, как он применяется при решении рациональных уравнений.

Пример 3. Решить уравнение х4 + х2 - 20 = 0.

Решение. Введем новую переменную у = х2. Так как х4 = (х2)2 = у2, то заданное уравнение можно переписать в виде

у2 + у - 20 = 0.

Это — квадратное уравнение, корни которого найдем, используя известные формулы; получим у1 = 4, у2 = - 5.
Но у = х2, значит, задача свелась к решению двух уравнений:
x2=4; х2=-5.

Из первого уравнения находим второе уравнение не имеет корней.
Ответ: .
Уравнение вида ах4 + bx2 +c = 0 называют биквадратным уравнением («би» — два, т. е. как бы «дважды квадратное» уравнение ). Только что решенное уравнение было именно биквадратным. Любое биквадратное уравнение решается так же, как уравнение из примера 3: вводят новую переменную у = х2, решают полученное квадратное уравнение относительно переменной у, а затем возвращаются к переменной х.

Пример 4. Решить уравнение

Решение. Заметим, что здесь дважды встречается одно и то же выражение х2 + Зх. Значит, имеет смысл ввести новую переменную у = х2 + Зх. Это позволит переписать уравнение в более простом и приятном виде (что, собственно говоря, и составляет цель введения новой переменной — и запись упроща
ется, и структура уравнения становится более ясной):



А теперь воспользуемся алгоритмом решения рационального уравнения.

1) Перенесем все члены уравнения в одну часть:

= 0
2) Преобразуем левую часть уравнения

Итак, мы преобразовали заданное уравнение к виду


3) Из уравнения - 7у2 + 29у -4 = 0 находим (мы с вами уже решили довольно много квадратных уравнений, так что всегда приводить в учебнике подробные выкладки, наверное, не стоит).

4) Выполним проверку найденных корней с помощью условия 5 (у - 3) (у + 1) . Оба корня этому условию удовлетворяют.
Итак, квадратное уравнение относительно новой переменной у решено:
Поскольку у = х2 + Зх, а у, как мы установили, принимает два значения: 4 и , — нам еще предстоит решить два уравнения: х2 + Зх = 4; х2 + Зх = . Корнями первого уравнения являются числа 1 и - 4, корнями второго уравнения — числа

В рассмотренных примерах метод введения новой переменной был, как любят выражаться математики, адекватен ситуации, т. е. хорошо ей соответствовал. Почему? Да потому, что одно и то же выражение явно встречалось в записи уравнения несколько раз и был резон обозначить это выражение новой буквой. Но так бывает не всегда, иногда новая переменная «проявляется» только в процессе преобразований. Именно так будет обстоять дело в следующем примере.



Пример 5. Решить уравнение
х(х- 1)(x-2)(x-3) = 24.
Решение. Имеем
х(х - 3) = х2 - 3х;
(х - 1)(x - 2) = x2-Зx+2.

Значит, заданное уравнение можно переписать в виде

(x2 - 3x)(x2 + 3x + 2) = 24

Вот теперь новая переменная «проявилась»: у = х2 - Зх.

С ее помощью уравнение можно переписать в виде у (у + 2) = 24 и далее у2 + 2у - 24 = 0. Корнями этого уравнения служат числа 4 и -6.

Возвращаясь к исходной переменной х , получаем два уравнения х2 - Зх = 4 и х2 - Зх = - 6. Из первого уравнения находим х1 = 4, х2 = - 1; второе уравнение не имеет корней.

О т в е т: 4, — 1.

ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

 

Решение иррациональных уравнений.
Уравнения, в которых под знаком корня содержится переменная, называют иррациональными. Таково, например, уравнение .
При решении иррациональных уравнений полученные решения требуют проверки, потому, например, что неверное равенство при возведении в квадрат может дать верное равенство. В самом деле, неверное равенство при возведении в квадрат даёт верное равенство 12= (-1)2, 1=1.
Иногда удобнее решать иррациональные уравнения, используя равносильные переходы.
Пример 1. Решим уравнение .
Возведём обе части этого уравнения в квадрат и получим , откуда следует, что , т.е. .
Проверим, что полученные числа являются решениями уравнения. Действительно, при подстановке их в данное уравнение получаются верные равенства:
и
Следовательно, x=3 или x=-3 – решение данного уравнения.
Пример 2. Решим уравнение .
Возведя в квадрат обе части уравнения, получим . После преобразований приходим к квадратному уравнению , корни которого и .
Проверим, являются ли найденные числа решениями данного уравнения. При подстановке в него числа 4 получим верное равенство , т.е. 4 - решение данного уравнения. При подстановке же числа 1 получаем в правой части -1, а в левой части число 1. Следовательно, 1 не является решением уравнения; говорят, что это посторонний корень, полученный в результате принятого способа решения.
Ответ: .
Пример 3. Решим уравнение .
Возведём обе части этого уравнения в квадрат: , откуда получаем уравнение , корни которого и . Сразу ясно, что число -1 не является корнем данного уравнения, т.к. обе части его не определены при . При подстановке в уравнение числа 2 получаем верное равенство , следовательно, решением данного уравнения является только число 2.
Пример 4. Решим уравнение .
Возведя в квадрат обе части этого уравнения, получаем , , . Подстановкой убеждаемся, что число 5 не является корнем данного уравнения. Поэтому уравнение не имеет решений.
Пример 5. Решим уравнение .
По определению - это такое неотрицательное число, квадрат которого равен подкоренному выражению. Другими словами, уравнение равносильно системе:


Решая первое уравнение системы, равносильное уравнению , получим корни 11 и 6, но условие выполняется только для . Поэтому данное уравнение имеет один корень .
Пример 6. Решим уравнение .
В отличие от рассмотренных ранее примеров данное иррациональное уравнение содержит не квадратный корень, а корень третьей степени. Поэтому для того, чтобы “избавиться от радикала”, надо возвести обе части уравнения не в квадрат, а в куб: . После преобразований получаем:

Итак, , .
Пример 7. Решим систему уравнений:

Положив и , приходим к системе

Разложим левую часть второго уравнения на множители: - и подставим в него из первого уравнения . Тогда получим систему, равносильную второй:

Подставляя во второе уравнение значение v, найденное из первого , приходим к уравнению , т.е. .
Полученное квадратное уравнение имеет два корня: и .
Соответствующие значения v таковы: и . Переходя к переменным х и у, получаем: , т.е. , , , .
Преобразование иррациональных выражений.
Если знаменатель дроби содержит иррациональное выражение, то часто целесообразно избавиться от последнего.
Рассмотрим некоторые типичные случаи:

Пример:

При непосредственном возведении в квадрат обеих частей уравнения уравнение должно быть сначала преобразовано так, чтобы в одной части стояли только радикалы, а в другой – остальные члены исходного уравнения. Так поступают, если радикалов в уравнении два. Если же их три, то два из них оставляют в одной части уравнения, а третий переносят в другую. Затем обе части уравнения возводят в квадрат и проводятся необходимые преобразования (приведение подобных и т.п.). Далее все члены уравнения, не содержащие радикалов, снова переносятся в одну сторону уравнения, а оставшийся радикал (теперь он будет только один!) – в другую. Полученное уравнение вновь возводят в квадрат, и в итоге получается уравнение, не содержащее радикалов.
Пример. Введение новой переменной:
.
Решение: Обозначим , тогда

Уравнение примет вид:

Возведём его в квадрат:

Это уравнение так же возводим в квадрат:

Проверка: полученные значения t мы должны проверить в уравнении (1), так как именно оно возводилось в квадрат. Проверка показывает, что - посторонний корень, а - действительно корень уравнения (1). Отсюда получим:

Ответ: 0;-1.
Уравнения с радикалом третьей степени.
При решении уравнений, содержащих радикалы 3-й степени, бывает полезно пользоваться сложением тождествами:

Пример 1.
.
Возведём обе части этого уравнения в 3-ю степень и воспользуемся выше приведённым тождеством:

Заметим, что выражение стоящее в скобках равно 1, что следует из первоначального уравнения. Учитывая это и приводя подобные члены, получим:

Раскроем скобки, приведём подобные члены и решим квадратное уравнение. Его корни и . Если считать (по определению), что корень нечётной степени можно извлекать и из отрицательных чисел, то оба полученных числа являются решениями исходного уравнения.
Ответ: .
Решение 2
Возведём две новые переменные и , тогда ,
.
Заметим, что .
В итоге получим систему уравнений:

Используя первоначальные уравнения системы, преобразуем вторые, заменив первую скобку единицей, а вторую подставим вместо неизвестного увыражение , также полученное из первого .
Приведём подобные члены, раскрыв предварительно скобки и решив полученное квадратное уравнение. Его корни и . Вернёмся теперь к начальной подстановке и получим искомые решения:

Введение нового неизвестного.
Решив эти уравнения, найдём радикалы более высоких степеней, но наиболее часто использовавшийся способ их решения – введение нового(новых) неизвестного.
Пример 2.

Обозначим , тогда
а)
Уравнение примет вид:

Корень не удовлетворяет условию
Ответ: 76.
Методы решения иррациональных уравнений.
Методы решения иррациональных уравнений, как правило основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо равносильно исходному, либо является его следствием. Поэтому существуют два пути при решении иррациональных уравнений:
1) переход к выводным уравнениям (следствиям) с последующей проверкой корней;
2) переход к равносильным системам.
Второй подход избавляет от подстановки полученных корней в исходное уравнение (иногда такую проверку осуществить нелегко) и, вообще говоря, является более предпочтительным. Однако если в ходе решения оказалось, что проверка полученных корней не представляет труда, то можно не выяснять источники появления посторонних корней и не переходить к равносильным системам.
Пример 1.

Возведём в 6 степень:

Проверка:
, т.е. - верное равенство.
Ответ: 67.
Пример 2.

Преобразуем уравнение к виду:
и возведём обе части в квадрат:

, т.е.

Ещё раз возведём обе части в квадрат:
, т.е. , .
Проверка:
1) При

2)
Ответ: .
Пример 3.

Положим . Тогда и мы получаем уравнение , откуда , .
Теперь задача свелась к решению двух уравнений:
; . Возводя обе части уравнения в 5-ю степень, получим , откуда .
Уравнение - не имеет корней, поскольку под знаком возведения в дробную степень может содержаться неотрицательное число, а любая степень неотрицательного числа неотрицательна.
Ответ: 34.



 

, КВАДРАТНЫЙ КОРЕНЬ И ЕГО СВОЙСТВА

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.