Сделай Сам Свою Работу на 5

МАШИНОСТРОИТЕЛЬНОГО ПРОИЗВОДСТВА





В. А. Лебедев, М.А. Тамаркин, Д.П. Гепта

ТЕХНОЛОГИЯ

МАШИНОСТРОЕНИЯ

 

Проектирование технологий

Изготовления изделий

Ростов-на-Дону

Феникс

 

Раздел II

ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИИ

ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ

ДЕТАЛЬ КАК ОБЪЕКТ

МАШИНОСТРОИТЕЛЬНОГО ПРОИЗВОДСТВА

 

Деталью называют изделие, изготовленное из однородного по наименованию и марке материала без применения сборочных опера­ций. Конструктивная форма детали образуется сочетанием объемов материала, ограниченных простыми геометрическими поверхностя­ми − плоскостями, цилиндрами, конусами, сферами и т. д.

Конструктивная форма детали, набор поверхностей, которые ее образуют, размерные соотношения между ними и их точность не яв­ляются плодом вольной фантазии конструктора, а определяются теми задачами служебного назначения, решение которых должна обеспечивать деталь. Другими словами, каждая поверхность детали имеет свое определенное функциональное назначение [14].

С этой точки зрения любая поверхность детали может быть отне­сена к одной из следующих функциональных групп:



- основная база (ОБ);

- вспомогательная база (ВБ);

- исполнительная поверхность машины или механизма (ИП);

- свободная поверхность (СП).

Из теории базирования известно, что комплект основных баз дета­ли составляют поверхности (либо их элементы), участвующие в оп­ределении положения этой детали в машине или сборочной едини­це. Эти поверхности образуют комплект, лишающий деталь всех шести возможных степеней свободы (схема полного базирования) или только части из них (схема неполного базирования). На рис. 2.1 показаны конструкции с полным (рис. 2.1, а) и неполным (рис. 2.1, б) базированием шестерни на валу. В первом случае в комплект основ­ных баз шестерни входят отверстие, плоскость торца и боковая плос­кость шпоночного паза. Во втором случае шестерня напрессована на вал в любом угловом положении, и ее комплект основных баз состав­ляют только поверхности отверстия и торца.

Комплект основных баз у любой детали может быть полным или неполным, но он обязательно есть и обязательно только один, так как выполняет единственную функцию: определяет положение этой детали в изделии (машине).



Комплект вспомогательных баз детали составляют поверхности, участвующие в определении положения в изделии (машине) другой детали, присоединяемой к данной. На рис. 2.1 показаны вспомога­тельные базы вала, используемые для определения положения шес­терни. Как и для основных баз, комплект вспомогательных баз может быть полным или неполным. На рис. 2.1, б комплект вспомогатель­ных баз вала лишает шестерню пяти степеней свободы. Деталь может иметь несколько комплектов вспомогательных баз либо не иметь их совсем, это зависит от количества присоединяемых к ней деталей.

Так, шестерня на рис. 2.1, б не имеет вспомогательных баз, а вал на рис. 2.1, а имеет два таких комплекта: один для шестерни и вто­рой − для шпонки.

 

Рис. 2.1. Схемы базирования шестерни на валу:

ооо − ОБ шестерни;ххх− ВБ вала;vvv− СП шестерни

 

Некоторые детали имеют в своем составе исполнительные поверх­ности изделия (машины) или ее механизмов. Исполнительными поверх­ностями изделия (машины) называют те поверхности составляющих ее деталей, которыми она выполняет свое служебное назначение. Так, например, сверлильный станок выполняет свое назначение − обра­ботку отверстий − сочетанием двух поверхностей: коническое отвер­стие шпинделя, куда устанавливается рабочий инструменту плос­кость стола, куда устанавливается заготовка или приспособление для ее крепления. Взаимные движения этих поверхностей (вращение ко­нической поверхности вокруг своей оси и поступательное перемеще­ние ее перпендикулярно плоскости стола) реализуют кинематичес­кую схему формообразования отверстия. Таким образом, только две детали сверлильного станка несут на себе его исполнительные по­верхности − шпиндель и стол, остальные детали таких функцио­нальных поверхностей не имеют.



Более широкую группу составляют детали, имеющие в своем соста­ве исполнительные поверхности механизмов. Механизмы предназна­чены для преобразования движения одних тел в требуемые движения других тел. Поэтому исполнительными поверхностями механизмов на­зывают те поверхности составляющих их деталей, которыми произ­водится преобразование движения по характеру, величине или на­правлению. Например, в зубчатом механизме преобразование вращательного движения шестерни во вращательное в противопо­ложном направлении и с другой частотой движение зубчатого колеса осуществляется при взаимодействии (перекатывании со скольжени­ем) эвольвентных поверхностей зубьев шестерни и колеса. Эти по­верхности и являются исполнительными поверхностями зубчатого механизма и принадлежат они двум деталям − колесу и шестерне. Другие детали зубчатого механизма (валы, шпонки, подшипники, корпус и т. д.) исполнительных поверхностей не имеют.

Свободные поверхности предназначены для ограничения материа­ла, объединяющего в одно целое первые три группы поверхностей (см. рис. 2.1, а). Они не сопрягаются с поверхностями других деталей, как правило, к их точности предъявляются невысокие требования.

Правильность и достаточность размеров, описывающих конст­руктивную форму детали, указание марки и отдельных особых свойств материала являются обязательными, но недостаточными ус­ловиями обеспечения требуемого качества детали. Важную, чаще всего решающую роль играет здесь точность детали.

Размерное описание конструктивной формы детали по объекту описания может быть классифицировано следующим образом:

1) размеры и технические требования к форме и качеству каждой отдельно взятой поверхности (допустимые погрешности фор­мы, шероховатость, особые требования к качеству поверхност­ного слоя материала);

2) размеры и технические требования взаимного расположения поверхностей внутри комплекта одного функционального на­значения (например, размеры взаимного расположения исполнительных поверхностей шестерни: диаметр делительной ок­ружности Д, шаг по делительной окружности толщина зуба h и т. д.), см. рис. 2.1;

3) размеры и технические требования взаимного расположения комплектов поверхностей разного функционального назначе­ния (например, несоосность делительного цилиндра и базового отверстия шестерни е на рис. 2.1, а).

В технологической литературе в понятие «точность детали» вкла­дывается только геометрический смысл, т. е. под точностью детали понимают степень ее соответствия геометрически правильному про­тотипу. Принимая во внимание, что качество детали включает в себя, наряду с геометрической характеристикой, свойства материала, ко­торым наполнена конструктивная форма (во всем ее объеме и даже в отдельных местах), имеет смысл расширить понятие точности дета­ли, включив в это понятие и соответствие свойств материала задан­ному идеальному. В таком представлении точность характеризует степень приближения качества конкретной изготовленной детали (партии деталей) к заданному уровню [14].

Соответствие идеалу конструктивной формы и материала одной детали количественно оценивается разностью величин соответству­ющего показателя точности в реально изготовленной детали и задан­ного номинального его значения.

В партии изготовленных деталей реальные ее размеры, а следова­тельно, и их разницы с номинальным получают рассеяние, и степень соответствия партии идеалу оценивается полем рассеяния, называе­мым погрешностью.

В расширенном нами понятии точности детали количественно ее будем оценивать следующими показателями:

1) погрешностями размеров каждой из поверхностей детали;

2) макрогеометрическими погрешностями формы каждой из по­верхностей детали;

3) микрогеометрическими погрешностями формы (шероховатос­тью) поверхностей;

4) погрешностями размеров взаимного расположения поверхностей;

5) погрешностями состава, структуры и физико-механических свойств материала.

Итак, при изготовлении детали технолог должен воспроизвести в заданном материале конструктивную форму, описанную совокупно­стью размеров, которые, с точки зрения объекта описания, могут быть разделены на две группы: а) размеры, описывающие каждую отдельно взятую поверхность (ее размер, форму, шероховатость); б) размеры, описывающие взаимное расположение поверхностей (как внутри комплекта одного функционального назначения, так и между разными комплектами).

Требуемая степень приближения реальной детали к геометрически правильному прототипу задается допусками размеров, которые представляют собой разрешенные погрешности, т. е. допустимые поля их рассеяния.

Конечно же, показатели свойств материала реальных деталей в партии (структура, фазовый состав, физико-механические свойства и т. д.) претерпевают рассеяние, их допустимые поля задаются конст­руктором и обеспечиваются технологиями обработки (термической, химико-термической и т. п.).

Проектирование технологических процессов изготовления дета­лей является одной из частей технологической подготовки производ­ства, поэтому его следует проводить в соответствии с последователь­ностью и этапами, определенными стандартами системы разработки постановки продукции на производство (СРПП). Общие правила раз­работки технологических процессов определяется ГОСТ 14301-83.

Для проектирования технологических процессов изготовления детали необходимы следующие основные исходные данные:

1. Сборочный чертеж с кратким описанием служебного назначе­ния и технических условий приемки изделия.

2. Рабочие чертежи, определяющие материал, форму и размеры деталей, точность и качество обработанных поверхностей, осо­бые требования (твердость и структура материала, покрытие, термообработка, балансировка и т. п.)

3. Объем выпуска изделий, в состав которых входят изготавливае­мые детали, с учетом выпуска запасных частей.

4. Условия, в которых должны осуществляться ТП: вновь проекти­руемый или действующий завод, состав оборудования − нали­чие и перспектива обновления путем модернизации, получения нового, наличие производственных площадей, перспективы расширения, наличие и перспективы получения кадров.

5. Стандарты и нормали на полуфабрикаты.

6. Типовые, групповые и рабочие ТП на основные виды деталей.

7. Технологические характеристики оборудования, рабочего и из­мерительного инструмента.

8. Различного рода справочная литература, руководящие материа­лы, инструкции, нормативы.

Последовательность действий технолога по проектированию технологического процесса изготовления детали должна включать сле­дующие этапы:

• анализ конструкции и размерного описания детали;

• предварительное установление типа производства;

• анализ технологичности конструкции детали;

• выбор действующего группового, типового ТП или поиск ана­лога единичного ТП.

• выбор исходной заготовки и методов ее изготовления;

• разработку технологического маршрута изготовления детали;

• расчет припусков и размеров заготовки по технологическим переходам;

• выбор средств технологического оснащения операций;

• расчет и назначение режимов обработки на операциях изготов­ления детали;

• нормирование операций изготовления детали;

• технико-экономическое сравнение вариантов изготовления де­тали.

• оформление технологической документации.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.