Сделай Сам Свою Работу на 5

Лекция 13 Законы теплового излучения.





Закон Кирхгофа.

Обычно тепловым излучением считают электромагнитные волны, длина волны которых лежит в интервале от одного до нескольких десятков микрон (1 мкм = 10 - 6 м). Эти волны, также как и свет, испускаются атомами в виде отдельных цугов, начальная фаза и поляризация которых изменяются хаотически от одного элементарного акта испускания к другому. Поэтому тепловое излучение является некогерентным, и его закономерности оказываются справедливыми для всего диапазона электромагнитных волн.

Опыт показывает, что тепловое излучение можно охарактеризовать некоторыми параметрами. Известно,например, что интенсивность излучения зависит от температуры. Другим важным свойством излучения является его спектральный состав, т. е распределение интенсивности по различным частотам. Наиболее общей величиной для характеристики теп-лового излучения может служить поток энергии.Количество энергии, приходящееся на еди- ничный интервал частот, которое испускает единица площади (1м2) нагретого тела назы­вается излучателыной способностью:

Е n = d Физл / d n .

Одновременно вводится понятие поглощательной способности А n , определяемой как отношение поглощенной энергии к падающей,т.е.А n= dФпог / dФпад .Тело, погло-щательная способность которого равна единице.называется абсолютно черным телом.



Между испускательной Е n и поглощательной А n способностями существует

Рис.60.Излучение в зам- кнутой полости. определенная взаимосвязь. Для установления этой взаимосвязи рассмотрим некую замкнутую полость, вырезанную внутри изолированного от внешних воздействий тела (см.рис.60). Каждый участок поверхности полости излучает и поглощает лучистую энергию. Согласно законам термодинамики через не-которое время внутри полости наступит равновесие – температура всех ее частей(и излучения тоже) станет одинаковой. Излучение, находящееся в тепловом равновесии с окружающи ми телами,

называется равновесным. Опыт показывает, что в природе излучение всегда равновесно, т. е. его интенсивность и спектральный состав в точности соответствует температуре излучившего его тела.

Существующий между различными участками поверхности тепловой баланс должен выпол­няться для всех каналов теплообмена, т.к. в противном случае можно бы было перекрыв любой из них добиться нарушения равновесия,что противоречит законам термодинамики.В частности.это значит.что равновесие выполняется для каждого частотного интервала. Выделим внутри полости некоторую площадку S, излучательная способность которой равна Еn, а поглощательная - Аn , и пусть на эту площадку падает поток энергии dФпад.B интервале частот от n до n+ dn площадка излучает поток энергии dФизл = Еn Sdn и поглощает dФпог = Аnпад.В равновесии dФизл =пад. Из этого следует: Фпад = dnS .



Заменим теперь площадку S участком поверхности абсолютно черного тела с излучательной способностью en .Равновесие от этого нарушится не должно, и поток падающей энергии должен сохранить свое значение: dФпад = en S d n. Сравнивая это выражение с выражением для падающего потока энергии на площадку S, получим:

т.е. отношение испускательной и поглощательной способностей остается постоянным для любого тела.. Другими словами, их отношение есть универсальная функция частоты и температуры.Это положение носит название закона Кирхгофа.

 

§ 13 - 2 Вывод выражения для излучательной способности.

 

Это выражение впервые было получено М.Планком, который, опираясь на известный ему экспериментальный материал, предположил, что энергия световой волны пропорциональна не квадрату ее амплитуды, а частоте n, т.e. Есв = hn , где h - коэффициент пропорцио­нальности, известный теперь как постоянная Планка (h = 6,62× 10 -34 Дж сек.), причем про-цесс излучения происходит не непрерывно, а отдельными порциями - квантами. В связи с этим предположением энергия диполей также изменяется скачком от E1 до Е2. Однако мы приведем более простой вывод, принадлежащий А.Эйнштейну. Основная идея этого вывода состоит в том, что кроме спонтанных актов излучения, происходящих с вероятностью А i k существуют вынуженные элементарные акты излучения и поглощения под действием внешней периодической силы, вероятности которых Вi k или Вk i , в зависимости от направления перехода.



Рассмотрим систему, состоящую из большого числа (No) диполей, находящуюся в состоянии равновесия с тепловым излучением, спектральная плотность энергии которого(т.е. излучательная способность) равна en .

Обозначим энергию диполя до момента излучения через E1, a энергию диполей после излуче­ния – E2; число диполей в состояниях е1 и Е2 - через N1и N2 . Количество спонтанных пере­ходов из состояния с энергией е1 в состояние с энергией Е2 равно D = A12 N1 .B то же время под действием теплового излучения, характеризующегося излучательной способ-нос­тью en происходят вынужденные переходы как из состояния 1 в состояние 2, так и обратно.Число этих переходов равно D = n1В12 en , D = N2 B21en .

В состоянии теплового равновесия число переходов из состояния I в состояние 2 дол­жно равняться числу переходов из состояния 2 в состояние l.Ha основании этого запишем

D + D = D или А12N1 +n1В12 en = N2 B21en .

Отсюда находим en :

en = .

Для оценки отношения N2 / n1 используем представления классической статистики, позволяющей на основании распределения Больцмана вычислить число частиц с заданной энергией:

; , где N0 -общее число частиц в системе. Отсюда

.

Тогда с учетом того, что, как показывает эксперимент,В1221 , получим

en= .

В последнем выражении использовано пред­ставление Планка, что E1 –E2 = hn. Отношение A12 / B12 не может быть вычислено в нашем курсе. Строгий расчет показывает, что оно рав-но hn32 , где с – скорость света. Поэтому выражение для излучательной способности приобретает следующий вид:

en = .

Рис.61 Зависимость излучатель ной спосбности от частоты и температуры. Графическая зависимость излучательной способности приведена на рис.61, где по оси частот отложена угловая частота w =2nn.  

 

§ 13-3 Законы Стефана- Больцмана и Вина.

 

Из рис.61 видно, что для каждой температуры излучательная способность имеет максимальное значение при определенной частоте излучения. Для определения этой частоты проведем исследова-ние на экстремум величины en, предварительно проведя замену переменной в целях сокращения записи. Введем новую переменную х:

х = ;

тогда n = ; n3 = и dn = dx .

Теперь выражение для излучательной способности приобретает такой вид: en = .

Вычисляя первую производную и сокращая полученный результат на постоянную величи-ну, имеем:

= 0.

Из этого выражения видно, что оно равно нулю, если числитель дроби равен нулю, откуда для определения экстремального значения х получаем трансцендентное уравнение:

.

Можно показать,что это уравнение имеет решение (приближенное значение х м =2,8214 ), для простоты обозначим его а',т.е. х М = а', или hnМ / kT = а', откуда следует закон Вина:

nМ =аТ.

В этом выражении постоянная а является комбинацией других постоянных: а = a , k / h .

Определим интегральную излучательную способность Ет (она называется энергети-ческой светимостью) как еT = , или в обозначениях новой переменной:

ET = .

Интеграл в этом выражении является табличным,его величина равна л4 / 15.0бозначая через s комбинацию постоянных получаем следующее выражение для энергети-ческой светимости: ЕТ = sТ4, которое известно как закон Стефана-Больцмана.

Сравним теоретические выводы с практикой. Экспериментальные данные показывают, .что при комнатной температуре максимум излучения лежит в далекой инфракрасной об-ласти, излучение в видимой области практически отсутствует. При температуре, приближающейся к 1000 К, максимум по-прежнему в инфракрасной области, однако и из-лучение в видимой части спектра становится заметным ( см.рис.61). В силу того, что интен-сивность от длинных, красных волн, к коротким, фио-летовым, падает, наибольшая интен-сивность излучения при­ходится на красную часть спектра - это температура «красного каления». По мере роста температуры различие в интенсивностях падает, излучение приоб-ретает желтый, а затем бе­лый цвет. При температуре между 5000 и 6000° К максимум про-ходит через область спектра, к которой человеческий глаз наиболее чувствителен. Тем-пературе 5900 К отвечает темпера­тура поверхности Солнца, лучеиспускательная способ-ность которого близка к лучеиспус­кательной способности абсолютно черного тела. Такое излучение воспринимается глазом как белый, дневной свет. При более высоких темпера-турах максимум смещается в ультра­фиолетовую область, а интенсивность в фиолетово - голубой области становится большей, чем в красной. Излучение приобретает голубой отте-нок.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.