Сделай Сам Свою Работу на 5

Дифракция Френеля на круглом экране.





Рис.49. Диффракция на круглом экране. Пусть препятствием служит теперь небольшой не-прозрачный диск, и пусть радиус волнового фронта настолько велик, что волновая поверхностьS прак-тически совпадает с плоской поверхностью диска ( рис.49). Разобьем волновой фронт на зоны спосо-бом, аналогичным изложенному в предыдущем па-раграфе. В точку наблюдения В приходят все коле-бания волнового фронта за исключением тех зон, которые закрыты диском. Это суммарное колебание на векторной диаграмме (см. рис.46) изобразится вектором АД . Начало вектора соответствует точке, лежащей на краю диска. При изменении расстоя-

ния от диска до точки В число закрытых зон будет меняться, и начало вектора АД станет описывать окружность вокруг центра спирали, тогда как конец вектора всегда находится в ее центре. При большом числе открытых зон длина вектора почти не изменяется. Поэтому в точке В будет наблюдаться светлое пятно (пятно Пуассона).

 

§ 11 –5 Дифракция Фраунгофера.

 

Этот вид дифракции наблюдается в параллельных лучах, когда волновой фронт ста-новится плоским, а зоны Френеля принимают вид узких прямоугольных полосок. Опти-



Рис.50. Диффракция Фраунгофера на щели. ческая схема наблюдения этого вида диф-ракции представлена на рис.50. В роли пре-пятствия здесь выступает узкая прямоуголь-ная щель (узкая сторона щели лежит в плос-кости рисунка). Разбиение поверхности щели на зоны Френеля осуществляется следующим образом: через край щели (точка М0 ) прово-дится плоскость (М0 Р), перпендикулярная идущим в точку наблюдения лучам, а затем проводятся параллельные ей плоскости, от-стоящие друг от друга на полволны.Эти плос-кости, пересекая плоскость щели, разбивают ее на зоны Френеля, которые представляют собой полосы, параллельные краям щели:

границы зон изображаются точками М 01, М2 …, а отрезки М 0М1 , М1М2 определяют ширину первой, второй и т.д.зон.Из рис видно,что в расчете не учитывается разность хода от плоскости М0Р до фокуса линзы Л, предназначенной для создания резкого изображения на экране. Это является следствием таутохронизма линзы, означающего, что лучи прохо-дят пути от М0Р до фокуса линзы за одинаковое время. Попутно заметим, что линза ЛК предназначена для создания параллельного пучка лучей. Предположим, что угол j выбран таким образом, что на ширине щели укладывается целое число зон, т.е. МР = kl/2 ( k = 1,2,3 …). В то же время из DМ0РМ следует, что МР = ММ0 sin j или MP = bsinj. Если число зон четное ( k =2m), то выбранное направление соответствует минимуму освещенности ( зоны попарно гасят друг друга), а если – нечетно (k = 2m-1) – то максимуму. Таким образом, имеем:
bsinj = ml - условие минимума,



bsinj = (2ь-1)l/2 – условие максимума.

При движении точки наблюдения в направлении, перпендикулярном плоскости рисунка (вдоль длинной стороны щели) картина не изменяется, и на экране видны чере-дующиеся темные и светлые полосы. Однако интенсивности светлых полос быстро убы-вают так, что практически с трудом удается наблюдать более двух таких полос с каждой стороны от центрального максимума.

Дифракционная решетка.

Рис.51. Дифракция на щели. Возьмем теперь в качестве препятствия диф-ракционную решетку, т.е непрозрачную пла-стинку с одинаковыми параллельнымии рав-ноотстоящими друг от друга щелями(рис51). Обозначим, как и прежде, ширину щели b, а ширину непрозрачного участка – а . Величи-ну d = а + b назовем периодом или постоян-ной решетки.Выбирая ту же волновую по-верхность, что и при рассмотрении дифрак-

ции на одной щели, и применяя принцип Гюйгенса-Френеля, можно заметить, что теперь в каждой точке экрана для наблюдений собираются лучи, идущие от всех N щелей. Для вы-числения результата сложения выделим в каждой щели одинаковые точки(например- верх-ние).Две таких точки в соседних щелях при заданном угле j имеют разность фаз, равную



q = . В точке наблюдения колебания от всех щелей сложатся в одинаковых фазах, если разность фаз q равна 2pn (n =0,1,2…), т.е. q = = 2pn, откуда получается ус-ловие для максимумов dsinj = nl . Можно показать, что кроме этих максимумов существу-ют еще другие, положения которых зависит от числа щелей, но интенсивность их крайне не значительна. Чтобы различать эти максимумы с теми, которые удовлетворяют условию dsinj = nl, принято называть их дополнительными максимумами, а максимумы, соответ-ствующие условию dsinj = nl - главными. Значение числа n определяет порядок главного максимума (первый максимум, второй и т.д) Между максимумами должны располагаться минимумы освещенности, но с практической точки зрения они не представляют особого интереса и в нашем курсе не рассматриваются.

Полученные условия главных максимумов справедливы для одной длины волны све-та. Если же свет – белый, то для каждого из его составляющих цветов условия максимумов будут соответствовать различным углам j, т.е. на экране получится набор цветных полос. Другими словами, дифракционная решетка позволяет анализировать спектральный состав световых лучей. Поэтому решетку можно использовать как спектральный аппарат. Все спектральные аппараты характеризуются такими величинами как дисперсионная область, угловая дисперсия и разрешающая способность.

Дисперсионная область G определяет ширину спектрального интервала отl доl+ Dl, в котором максимумы для различных волн не перекрываются друг с другом.Величина G =l/n, где n - порядок максимума.

Угловая дисперсия D определяет угловое расстояние между волнами, длина которых отличается на единицу (длины).Выражение для определения D можно получить, дифферен-цируя условия главных максимумов: dcosj =lnd. Отсюда D определяется как

.

Под разрешающей способностью А подразумевается возможность спектрального аппарата различать линии, соответствующие близким значениям длин волн l и l + dl. Она определяется выражением .

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.