Сделай Сам Свою Работу на 5

Дифракция рентгеновских лучей.





Рентгеновскими лучами называют электромагнитное излучение, длина волн которого примерно равна !0 –10 м. Длина волны рентгеновских лучей много меньше световых волн,

Рис.52. Дифракция рентгенов- ских лучей. поэтому наблюдать дифракцию этих лучей в стандар-тных схемах не удается. Препятствиями, размеры кото-рых сравнимы с длиной волны рентгеновских лучей, могут служить лишь межатомные расстояния в твер-дых телах. Схема дифракции показана на рис.52. Ато-мы кристалла расположены в правильном порядке, об-разуя плоскости, отражающие лучи. Коэффициент пре-ломления лучей близок к единице, и лучи отражаются от различных плоскостей без заметного преломления (nр » 1). Обозначая угол скольжения лучей через a, а расстояние между отдельными слоями через d, можно

заметить, что разность хода между интерферирующими лучами d =AD +DC – BC. Из DADF AD = FD/sina; AF = dtga, а из DАВС ВС = 2AFcosa. С учетом того, что AD = DC, имеем:

Условие максимума будет выполняться при 2dsina = kl , где k –целое число. Полученная формула носит название формулы Вульфа – Брэггов.

Рассмотренный случай дифракции относится к конкретным межатомным плоскостям и монохроматическому излучению, что заметно упрощает анализ условий образования мак-симумов. В действительности же межатомные плоскости могут быть ориентированы произ- вольным образом, причем в роли интерферирующих лучей могут выступать лучи, отраженные не только от соседних плоскостей. Кроме того, следует иметь ввиду, что реаль-ные кристаллические структуры имют три измерения, каждому из которых могут соответст-вовать различные условия образования максимумов. Тем не менее рентгенографический метод анализа кристаллов нашел широкое применение в петрографии, рентгеноструктур-ном анализе и ряде других приложений.




Лекция 12 Поляризация света. Взаимодествие света с веществом.

Явление поляризации.

Обычно считается, чтопонятие поляризации связано с сохранением неизменной ориен-тации плоскости колебаний. Говорить о поляризации имеет смысл только для поперечных колебаний. Свет, как мы знаем, является электромагнитной волной, а эти волны – попереч-ны и поляризованы (см.рис.37) так, что казалось бы, световые колебания всегда должны быть поляризованы. Однако мы знаем, что световые волны испускаются отдельными цуга-ми, продолжительность которых не превышает 10–8 сек. Процесс испускания является слу-



Рис.53. Прохождение света через анализатор и поляризатор. чайным, и фаза испущенной волны, а также ориента-ции векторов Е и В в плоскости, пер пендикулярной направлению излучения, могут быть любыми.Т.к. вектора Е и В в волне жестко связаны друг с другом, имеет смысл рассматривать лишь один из них (пусть, для определенности, это будет вектор Е). В среднем, в любой волне все допустимые ориентации вектора Е равновероятны (см. рис.53). Существуют приспобле-ния, называемые поляризаторами, которые обладают способностью пропускать через себя световые лучи

только с одним направлением плоскости колебаний электрического вектора Е, так что на выходе поляризатора свет становится плоско (линейно) поляризованным. Человеческий глаз не в состоянии обнаружить, поляризован свет или неполяризован. Для того, чтобы обнаружить это, необходимо использовать второе такое же приспособление, которое на-зывают анализатором. Если направление пропускания анализатора и поляризатора совпа-дают, луч света на выходе из анализатора имеет максимальную интенсивность. При про-извольном угле a между направлениями анализатора и поляризатора (см.рис.53) амплитуда световых колебаний, выходящих из анализатора ЕА = ЕП cosa, где ЕП – амплитуда колеба-ний на выходе из поляризатора. В электромагнитной волне плотность энергии (интенсив-ность) пропорциональна квадрату амплитуды колебаний Е, т.е. I П ~ Е и IА ~ Е . На осно-вании этого получаем:



.

Это соотношение называется законом Малюса.

Закон Брюстера.

 

Простейшим приспособлением для поляризации света может служить прозрачное диэлектрическое зеркало. Пусть на диэлектрик (см. рис.54) падает луч естественного све та.

Рис.54. Поляризация света при отражении и преломлении. Обозначим через n2 коэффициент преломления диэлектрика, а через n1 – коэффициент преломления среды, откуда падает свет (a - угол падения, b - угол преломления). Условимся изображать направление колебаний вектора Е в виде точек или тонких чер-точек, где точка изображает направление вектора, перпендику-лярное плоскости чертежа, а черточка означает, что вектор Е ле-жит в плоскости чертежа. В естественном свете равновероятны все направления колебаний Е, что изображается в виде того, что количество точек и черточек одинаково. Опыт показывает, что отраженный и преломленнвй лучи становятся частично поляризованными, причем в отраженном свете преобладающими ста-новятся колебания, плоскость которых перпендикулярна

плос кости чертежа, а в преломленном предпочтительнее оказываются направления колебаний в плоскости чертежа ( на рис. это изображается в виде преимущества числа точек или черто-чек). Существует угол падения, при котором отраженные лучи становятся полностью поля-ризованными. Этот угол называется углом Брюстера, его значение связано с отношением n2/n1 = n21, т.е. относительным показателем преломления:

.

Качественное объяснение этого закона следует из рассмотрения микроскопической картины распространения светв в веществе. Рассмотрим упрощенную модель взаимодействия света с веществом, согласно которой переменное электрическое поле световой волны приводит в двихение атомы вещества. Атом же представим как диполь, где роль отрицательного заряда

Рис.55. Индикатрисса излучения диполя. играет внешний электрон, а вся остальная часть атома рассматривается как положи-тельный заряд (ион). Т.к. масса положитель-ного иона во много раз ( более 2000) больше, чем масса электрона, можно рассматривать лишь колебания электрона. Строгая теория электромагнетиза показывает, что колеблю-щийся диполь становится излучателем элек-тромагнитных волн, причем интенсивность излучения различна в разных направлениях.

Для иллюстрации анизотропности излучательной способности диполя строится диаграмма (индикатрисса), на которой интенсивность излучения в заданном направлении изображается в виде вектора. Длина этого вектора и характеризует интенсивность излучения. Пространственное изображение индикатриссы приведено на рис.55. В правой части рисунка показано сечение диаграммы вертикальной плоскостью, проходящей через центр диаграммы.

Положения рассмотренной модели применим для объяснения закона Брюстера. В па-дающем на границу раздела двух сред естественном свете вектор Е принимает всевозмож-ные направления (см.рис.53), но без ограничения общности можно рассматривать лишь два:

Рис.56. К выводу закона Брюстера. Е и Е , т.к. любой вектор Е можно пред-ставить как их сумму (см. левую часть рис.56). Вектор Е соответствует колебани-ям, которые происходят в направлении, пер-пендикулярным плоскости чертежа,а Е ха-рактеризует колебания в этой плоскости. Представляет интерес рассмотреть лишь со-ставляющую Е .Если диполь излучает волну Е в направлении преломленного луча ( пра-

вая часть рис.56), то из диаграммы направленности следует, что в направлении,перпендику-лярном этому лучу, никакого излучения не происходит. В этом направлении излучаются лишь волны с напряженностью Е . Из этого следует, что если луч преломленный и луч от-раженный перпендикулярны друг другу, то в отраженном свете полностью отсутствуют ко-лебания с Е .Из рисунка видно, что b +a + 900 = 1800,или b+a =900, тогда как из закона преломления следует, что sina = n21 sinb . Подставляя в закон преломления b = 900 - a , по-лучим sina = n21sin(900 -a) = n21cosa, т.е.

tga = n21.

Поглощение света.

При прохождении света через вещество часть энергии световой волны поглощается, переходя во внутреннюю энергию вещества. Для оценки величины этих по-терь рассмотрим световой поток, распространяющейся вдоль оси х (рис.57).0пыт показы-вает,что при про­хождении очень тонкого слоя вещества толщиной dx относительная убыль

Рис.57. Изменение интенсивнос- ти света при его поглощении. интенсивности, т.е.отношение изменения интенсив-ности dI в этом слое к интенсивности падающего света I(х) (см.рис.57),пропорциональна толщине слоя: , где коэффициент К, зависящий от свойств вещества, называется коэффициентом поглощения.Знак минус отражает убывание интенсивности с ростом х. Изменение интенсив­ности света при прохождении слоя конечной толщины х находится путем прямого интегри-рования вышеприведенной формулы: .

Потенцируя последнюю формулу, получим известный закон Бугера: .

 

§ 12 - 4 Рассеяние света.

 

Плоская волна, распространяющаяся в однородной среде, остается плоской.Однако ес­ли среда неоднородна и в ней имеются включения с другими оптическими свойствами, то кроме волны, распространяющейся в первоначальном направлении, появляются волны, рассеянные в стороны. Эти волны уносят часть энергии и уменьшают интенсивность первона­чального луча. Характер рассеяния зависит от размеров и природы неоднородностей. Если их размеры больше длины волны.то наблюдается чисто геометрическое рассеяние.Это касается прежде всего твердых частиц, взвешенных в воздухе.Падающий на разные участки поверхности частицы солнечный свет отражается под различными углами. Если при этом спектральный состав света не меняется, то рассеянный свет остается белым (примером это-го может служить белый цвет неба в пустынях.когда восходящие воздушные потоки переносят в верхние слои атмосферы мелкие частицы песка). В целом наблюдаемая картина рас-сеяния очень чувствительна к размерам и форме неоднородностей (радуга и гало вокруг солнца, вызванные наличием в земной атмосфере соответственно капелек и льдинок).

Если размеры неоднородносей существенно меньше длин волн света, то интенсивность рассеянного света удовлетворяет закону Рэлея: Iрас~ Io w4 , где w -частота падаю-щего света, причем интенсивность рассеянного света различна по разным направлениям (т.е анизотропна). Сильная зависимость интенсивности рассеянного света от частоты означает,

Рис.58. Рассеяние света в атмосфере. что существенно сильнее рассеиваются вол-ны с большей частотой. В частности, если через среду идет волна от источника белого света (от Солнца - см. рис.58), то при наблюдении сбоку среда кажется голубоватой, а сам источник на просвет выглядит более красным. Этим объясняется голубой цвет неба и красный цвет зари. Разные цветовые оттенки получаются из-за разных геометрических

расположении источника и наблюдателя. Так в глаз наблюдателя 1 ( см.рис.) прихо-дит прямой луч, тогда как наблюдатель 2 видит, в основном, рассеянные лучи.

 

§ 12 - 5 Дисперсия света.

 

 
 

Дисперсией называется зависимость скорости распространения световой волны в среде от частоты. Поскольку скорость волны однозначно связана с показателем преломления среды ( v = c/n; n = ), то нашей задачей будет выяснение характера зависимости диэлектри­ческой постоянной от частоты. Здесь уместно напомнить, что e =1+ k (k - диэлектрическая восприимчивость, определяющая соотношение между поляризацией ве-щества Р и действую­щем электрическим полем Е : Р = eо kЕ ).В то же время величина вектора поляризации опре­делялась как суммарный дипольный момент единичного объема: Р =Nqx, гдe величина qx характеризует дипольный момент каждой молекулы диэлектрика. При решении задачи будем пользоваться той же моделью.что применялась ранее при рас-смотрении закона Брюстера. Под действием переменного электрического поля световой волны расстояние электрона до положительного иона периодически изменяется.т.е. элек-трон совершает вынужденные колебания под действием внешней периодической силы.Вид этого уравнения, и его решение уже изучались ( см уравнение колебаний в кон-туре).Поэтому можно сразу написать выраже­ние для амплитуды колебаний электрона в атоме:

где b характеризует затухание колебаний, а w0 может рассматриваться как собственная частота колебаний электрона в атоме.Для упрощения математических выкладок будем пренебрегать затуханием,т.е положим b = 0.Тогда величина поляризации равна:

Р = .

С другой стороны,выше указывалось,что Р = e0 kЕ, поэтому

k = .

Тогда e = 1 +k = 1 + ; e = n2 .

Таким образом, имеем:

.

Рис.59 Частотная зависи- мость показателя прелом- ления. График частотной зависимости в сделанных упрощениях показан на рис.59. Из рис. видно,что вдали от резонансной частоты показатель преломления (точнее n2 ) возрастает пропорционально квадрату частоты.Такая частотная зависимость получила название нормальной дисперсии. Когда же частота внешних колебаний приближается к частоте собственных, амплитуда возрастает неограниченно. Ясно, однако,что этот результат есть следствие наших упрощений. При наличии за-тухания кривая имеет конечный максимум ( см. рис.59 ). Вблизи резонансной кривой показатель преломления имеет другой характер зависимости. Говорят, что - это область аномальной дисперсии, т.к. для нее величина n2 падает с ростом частоты, причем это наблюдается на фоне повышения поглощения света (амплитуда колебаний электрона возрастает).

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.