Принцип работы датчика ускорения
Принцип работы датчика ускорения в общих словах такой: при воздействии на подвижный элемент датчика массой возникает смещение, пропорциональное ускорению. Независимо от конструкции датчика ускорений его основная цель заключается в детектировании перемещения этой массы относительно корпуса устройства и преобразовании его в пропорциональный электрический сигнал. Поэтому другой составной частью всех акселерометров является детектор перемещений, способный измерять микроскопические амплитуды вибрационных колебаний или линейных ускорений.
На рис. 3.2 показана конструкция емкостного акселерометра, изготовленного с использованием МСТ (микросистемная техника). В кристалле кремния 1 вытравлены участки 2 так, что значительная инертная масса 3 механически отделена от других частей акселерометра. Она соединена с ними лишь тонкими перемычками 4, которые играют роль упругих элементов. На небольшом расстоянии (~10 мкм) от кристалла кремния сверху и снизу расположены металлические электроды 5 и 6. Роль демпфера играет вязкая непроводящая жидкость, которой заполняется пространство между электродами и кремнием.
Рис. 3.2 Конструкция емкостного акселерометра
Инертная масса 3 в такой конструкции может перемещаться только по вертикали. Электрические ёмкости между ней и верхним (нижним) электродами включены в противоположные плечи электрической мостовой схемы переменного тока. Её балансируют так, чтобы при отсутствии ускорения сигнал на выходе равнялся нулю. Когда объект, на котором установлен акселерометр, движется с ускорением, направленным вдоль оси сенсора, инертная масса 3 смещается из положения равновесия, вследствие чего одна из емкостей возрастает, а другая уменьшается. Из-за нарушения баланса на выходе мостовой схемы появляется напряжение соответствующего знака и тем большее, чем больше ускорение. Мостовую электрическую схему, необходимые электронные ключи, усилители, элементы термокомпенсации – все, что требуется для обработки сигналов и калибровки акселерометра, – формируют ныне методами МСТ на том же кристалле кремния.
В описанной конструкции акселерометра ускорение, которое и является здесь первичным информационным сигналом, сначала превращается в линейное перемещение инертной массы. Перемещение, в свою очередь, преобразуется в изменение емкости верхнего и нижнего конденсаторов, а последнее – в электрический сигнал.
Сегодня используются три технологии построения акселерометра:
· Пьезоэлектрические акселерометры – самый распространенный вид акселерометров, которые широко используются для решения задач тестирования и измерений. Такие акселерометры имеют очень широкий частотный диапазон (от нескольких Гц до 30 кГц) и диапазон чувствительности, а также выпускаются в различных размерах и формах. Выходной сигнал пьезоэлектрических акселерометров может быть зарядовым (Кл) или по напряжению. Датчики могут использоваться для измерений как удара, так и вибрации.
· Пьезорезистивные акселерометры обычно имеют малый диапазон чувствительности, поэтому они больше подходят для детектирования ударов, чем определения вибрации. Еще одна область их применения – испытания на безопасность при столкновении. В большинстве своем пьезорезистивные акселерометры отличаются широким диапазоном частот (от нескольких сотен Гц до 130 кГц и более), при этом частотная характеристика может доходить до 0 Гц (т.н. DC датчики) или оставаться неизменной, что позволяет измерять сигналы большой продолжительности.
· Акселерометры на переменных конденсаторах относятся к компонентам новейших технологий. Как и пьезорезистивные акселерометры, они имеют выход по постоянному току. Такие акселерометры отличаются высокой чувствительностью, узкой полосой пропускания (15–3000 Гц) и отличной температурной стабильностью. Погрешность чувствительности в полном температурном диапазоне до 180°C не превышает 1.5 %. Акселерометры на переменных конденсаторах используются для измерений низкочастотной вибрации, движения и фиксированного ускорения.
Измеряемые параметры
Параметры, измеряемые акселерометрами, можно сгруппировать в следующие классы:
1. Измерение вибрации: объект вибрирует, если он производит колебательные движения относительно положения равновесия. Вибрацию измеряют в транспортной и аэрокосмической промышленности, а также на промышленном производстве.
2. Измерение ударных ускорений: внезапное возбуждение структуры, создающее резонанс. Ударный импульс может создаваться взрывом, ударом молотка по предмету или в результате столкновения с другим объектом.
3. Измерение движения: медленное перемещение со скоростью от доли секунды до нескольких минут, например, перемещение руки робота или подвеска автомобиля.
4. Сейсмоисследования: измерения малых перемещений и низкочастотной вибрации. Такие измерения требуют специализированных малощумящих акселерометров с высокой разрешающей способностью. Акселерометры для сейсмоисследований контролируют движения мостов, полов, а также определяют землетрясения.
Для измерения вибрации используются емкостные и пьезоэлектрические акселерометры. Пьезоэлектрические акселерометры благодаря их широкой частотной характеристике, хорошей чувствительности и высокой разрешающей способности. В зависимости от типа выходного сигнала они могут быть с зарядовым выходом и с выходом по напряжению (IEPE).
В последнее время широко используются акселерометры с вольтовым выходным сигналом, поскольку они удобны в применении. Несмотря на разнообразие торговых марок и модификаций, все производители компонентов этой группы придерживаются единого псевдо-стандарта, поэтому легко заменяемы между собой. Обычно такие акселерометры имеют в своей структуре усилитель заряда, поэтому не требуют дополнительных внешних компонентов. Всё, что нужно для подключения акселерометра – это источник постоянного тока. Таким образом, для измерения вибраций в известном диапазоне и в пределах температурной нормы -55…125°C (до 175°C для высокотемпературных моделей) рекомендуется использовать пьезоэлектрические акселерометры с выходным сигналом по напряжению.
Преимущества акселерометров с зарядовым выходом проявляются в возможности работы при высоких температурах и в широком диапазоне амплитуды, который определяется настройками усилителя заряда (заметим, что акселерометры по напряжению имеют фиксированный диапазон амплитуды). Типичный рабочий диапазон температур составляет -55…288°C, а специализированные компоненты могут работать в диапазоне -269…760°C.
Однако в отличие от IEPE акселерометров, емкостные датчики требуют применения специальных малошумящих кабелей, цена которых значительно превышает цену на стандартные коаксиальные кабели. Для подключения датчиков также потребуются усилители заряда и линейные конвертеры. Подводя итоги, можно придти к заключению, что емкостные акселерометры предпочтительны для высокотемпературных измерений неизвестных заранее ускорений.
Для измерения вибрации очень малой частоты, рекомендуется использовать акселерометры на переменных конденсаторах (VC). Их частотная характеристика составляет от 0 Гц до 1 кГц, в зависимости от требуемой чувствительности. При проведении измерений низкочастотной вибрации VC акселерометр с частотной характеристикой 0–15 Гц будет иметь чувствительность 1В/g. Такие датчики незаменимы в электрогидравлических шейкерах, в автомобилестроении, в тестовых испытаниях машин и конструкций, в системах подвески, железнодорожном транспорте.
Для измерений ударных ускорений используются две технологии, модельный ряд представлен компонентами на различный уровень силы удара и с различными выходными характеристиками. Выбор акселерометра для ударных ускорений, в первую очередь, зависит от ожидаемого уровня ударного ускорения.
Низкий уровень <500g
Столкновение <2000g
Поле в дальней зоне 500–1000g, датчик на расстоянии 2 метров от точки удара. Поле в ближней зоне >5000g, датчик на расстоянии менее 1 метра от точки удара.
Для измерения малых ударных ускорений можно использовать акселерометры общего применения. Акселерометр должен иметь линейный диапазон до 500g и ударопрочность 500g. Обычно для этого используются датчики с выходным сигналом по напряжению, поскольку они не чувствительны к кабельным вибрациям. Для аттенюации резонанса рекомендуется использовать усилитель с фильтром нижних частот.
Для тестовых испытаний машин на безопасность используются пьезорезистивные акселерометры.
Для измерения движения, фиксированного ускорения и низкочастотной вибрации подходящим выбором станут акселерометры с переменной емкостью. Они позволяют измерять медленные изменения ускорения и низкочастотную вибрацию, при этом уровень их выходного сигнала достаточно высок. Также, такие датчики обеспечивают высокую стабильность в широком диапазоне рабочих температур.
При установке VC акселерометра в положение, когда его ось чувствительности параллельна оси земного притяжения, выходной сигнал датчика будет равен усилию в 1g. Такая закономерность известна как DC отклик. Благодаря такой особенности, акселерометры на переменных конденсаторах часто используются для измерений центробежной силы или ускорений и замедлений подъемных устройств.
Таким образом, по рабочему диапазону частот в системе можно использовать только пьезоэлектрический датчик, например такой, который используется в качестве датчика детонации в системе управления двигателем внутреннего сгорания.
Принцип действия датчика
Конструктивно датчик детонации представляет собой акселерометр, то есть прибор, преобразующий энергию механических колебаний станка в электрический сигнал. Другими словами, это приемник звуковых колебаний в твердых телах. При возникновении вибрации инерционная масса воздействует на пьезоэлемент с соответствующими частотой и усилием, в результате возникновения пьезоэффекта на контактах появляется электрический сигнал.
Большое значение имеет место установки датчика детонации на станке. При его выборе руководствуются следующими критериями: — сигналы от каждого узла станка не должны сильно различаться по уровню; — уровень сигнала должен иметь достаточную для его дальнейшей обработки величину; — помехи, возникающие от других шумов работающего станка, должны быть минимальными. Важными характеристиками датчика детонации являются: — температурный диапазон. Датчик должен быть работоспособным до 150 – 200 о С; — собственная резонансная частота. По принципу определения наличия детонации различают системы с резонансными и широкополосными датчиками детонации. В системах с резонансным датчиком значение собственной резонансной частоты совпадает с частотой детонационных колебаний в цилиндре, а в системах с широкополосным датчиком собственная резонансная частота датчика значительно выше, но на частотной характеристике существует равномерный участок, лежащий в диапазоне частот детонационных колебаний; — коэффициент преобразования. Он показывает, как соотносится амплитуда выходного сигнала с амплитудой детонационных колебаний в месте установки датчика (mv/g).
Внешний вид датчика приведен на рис. 3.4.
Рис.3.4 Широкополосный датчик ускорений
Работа пьезоэлектрического датчика основана на том, что некоторые типы материалов генерируют электростатическую энергию или напряжение, когда к ним прикладывается механическая нагрузка. Наиболее часто применяемым пьезоматериалом являются кварц, поскольку он имеет низкую чувствительность к изменению температуры и хорошую линейность по широкому диапазону уровней напряжений с низким гистерезисом. Пьезоэлектрические преобразователи обеспечивают равномерный выход на частотах до 50 кГц. Кварцевые преобразователи имеют температурный диапазон от – 200 о С до + 300 о С.
На рис. 3.5 показана конструкция датчика детонации.
Рис. 3.5 Конструкция пьезоэлектрического датчика детонации: 1 - корпус, 2 - инерционный элемент, 3 - пьезоэлемент, 4 - отверстие соединения с атмосферой, 5 - выходные контакты
Из литературы /глава 2/ известно, что появление дефектов в работе механизмов станка приводит к возникновению колебаний в следующем диапазоне частот: 500-5000 Гц (для изношенных зубьев шестерен).
Таким образом, для использования штатного датчика детонации в целях вибродиагностики станка необходимо убедиться, что он обладает равномерной АЧХ в диапазоне частот от 500Гц до 5кГц. Таким датчиком является датчик детонации типа 18.3855-01.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|