ВЫБОРОЧНЫЕ ХАРАКТЕРИСТИКИ СТАТИСТИЧЕСКОГО РАСПРЕДЕЛЕНИЯ
Пусть имеется выборка объема n со значениями признака х1 х2, х3, ..., хk. Построим статистическое распределение.
Таблица 4
xi
| x1
| x2
| x3
| …
| xk
| ni
| n1
| n2
| n3
| …
| nk
| Для того чтобы охарактеризовать наиболее существенные свойства этого распределения, так же как и в теории вероятностей, используют средние показатели или, как их называют, выборочные числовые характеристики. Рассмотрим некоторые из них.
1. Выборочная средняя .При наличии повторяющихся значений признака
, (3)
где п — объем выборки, хi ni взяты из табл. 4. Выборочная средняя изменяется при переходе от одной выборки к другой, поэтому в силу случайного отбора является случайной величиной.
Если дано распределение непрерывной случайной величины, то вместо хi берут середину интервала (xi, …, xi+1), т.е. .
Для упрощения вычисления выборочных характеристик удобно перейти от данных значений признака x1|, х2, х3,...,хk к условным значениям и1, и2,. и3,..., uk—по формуле
, (4)
т. е. ввести вспомогательную величину , где С–новое начало отсчета, обычно это значение признака с наибольшей частотой, h – масштаб.
Можно показать, что при переходе к условным значениям признака по формуле зависимость, связывающая и , имеет вид
(5)
Действительно,
Пример.Дано статистическое распределение:
Таблица 5
Найти .
Решение. Перейдем к условным значениям признака, приняв за C значение с наибольшей частотой, т. е. С=5. Далее находим h = xi-xi-1 = 2.
Имеем
Составляем распределение условных значений признака.
Таблица 6
Находим
Особенно выгодно применять формулу (4), если значения признака велики.
2. Выборочная и исправленная дисперсия.Одна числовая характеристика не дает полного представления о статистическом распределении. В агрономической и зоотехнической практике, как и в других сферах производства, при анализе результатов существенным для выводов является характеристика рассеяния значений признака относительно выборочной средней. Отклонение отдельных значений от выборочной средней бывает значительным и с этим нельзя не считаться.
Составим таблицу отклонений , указывая соответствующие частоты.
Таблица 7
Найдем среднее значение отклонений . Имеем
Следовательно, среднее значение отклонения равно нулю, и поэтому непригодно для характеристики рассеяния признака. Для того чтобы освободиться от знака отклонения и при этом сделать влияние больших отклонений «более ощутимыми», их возводят в квадрат и находят среднее значение. Полученную характеристику называют выборочной дисперсией и обозначают .
Итак,
или
(5)
Определение. Выборочной дисперсией называется среднее арифметическое значение квадратов отклонений признака от выборочной средней.
Пример.Урожайность двух сортов А и В пшеницы, возделываемых на трех участках с одинаковыми условиями роста и развития, характеризуется следующими таблицами:
сорт А сорт В
X, ц
|
|
|
|
| Y, ц
|
| 19 '
|
| Площадь, га
|
|
|
| Площадь, га
|
|
|
|
Найти дисперсии значений признака обоих сортов.
Решение. Вычислим XB, YB, DX, DY. Находим
Как видим, дисперсия Dy как мера рассеяния или разброса урожайности сорта В относительно среднего значения YB в случае примерно одинаковых площадей больше, чем Dy, а это явление нежелательное. Из двух сортов лучшим является тот, урожайность которого более устойчива. По данным опыта сорт А предпочтительнее сорта В.
Для вычисления выборочной дисперсии используют следующую формулу:
(6)
т. е. дисперсия равна разности между средним значением квадрата и квадратом выборочной средней.
Действительно,
Для облегчения вычисления дисперсии используют следующие свойства:
1°. Дисперсия не изменится, если все значения признака увеличить (уменьшить) на постоянное число.
2°. При умножении значений признака на постоянное число h ≠ 0 дисперсия умножается на h2.
Выборочная дисперсия, как это показано в более подробных курсах (например, [4]), имеет систематическую ошибку, приводящую к уменьшению дисперсии. Чтобы это устранить, вводят поправку, умножая DB, на . В результате получают исправленную дисперсию
(7)
или
(8)
На практике часто вместо этой формулы используют другую, ей равносильную, а именно:
(9)
При малых выборках S ощутимо отличается от DB, например, при n = 2 имеем S2=2DB. С возрастанием n исправленная дисперсия S2®DB. Уже при n = 30 дисперсии S2и DB различаются на 3%.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2025 stydopedia.ru Все материалы защищены законодательством РФ.
|