Сделай Сам Свою Работу на 5

Создание матриц с заданными свойствами





Создание единичной матрицы

Для создания единичной матрицы (она обычно обозначается как Е) служит функция eye:

· еуе(n) — возвращает единичную матрицу размера nrn;

· eye(m.n) или еуе([m n]) — возвращают матрицу размера mn с единицами по диагонали и нулями в остальных ячейках;

· eye(size(A)) — возвращает единичную матрицу того же размера, что и А.

Единичная матрица не определена для многомерных массивов. Так, функция у = eye([2,3,4]) при попытке ее вычисления приведет к ошибке.

Пример использования функции eye:

  » t=eye(4. 5)        
  t =          
   
   
   
   

 

Создание матрицы с единичными элементами

Для создания матриц, все элементы которых — единицы, используется функция ones:

· ones(n) — возвращает матрицу размера nхn, все элементы которой — единицы. Если п — не скаляр, то появится сообщение об ошибке;

· ones(m.n) или ones([m п]) — возвращают матрицу размера mxn, состоящую из единиц;

· ones(dl.d2,d3....) или ones([dl1 d2 d3...]) — возвращает массив из единиц с размером d1xd2xd3x...;

· ones(size(A)) — возвращает массив единиц той же размерности и размера, что и А. Матрица с единичными элементами в отличие от единичной матрицы в MATLAB определена и для многомерных массивов.



Пример:

» s=ones(3,4)

s=

1 1 1 1

1 1 1 1

1 1 1 1

 

Создание матрицы с нулевыми элементами

Иногда нужны матрицы, все элементы которых — нули. Следующая функция обеспечивает создание таких матриц:

· zeros(п) — возвращает матрицу размера nхn, содержащую нули. Если n — не скаляр, то появится сообщение об ошибке;

· zeros(m.n) или zeros([m n]) — возвращают матрицу размера mxn, состоящую из нулей;

· zeros(d1.d2,d3,...) или zeros([d1.d2.d3...]) — возвращают массив из нулей размера d1xd2xd3x...;

· zeros(size(A)) — возвращает массив нулей того же размера и размерности, что и А.

Пример:

» D=zeros(3.2)

D=

0 0

0 0

0 0

 

Создание линейного массива равноотстоящих точек

Функция linspace формирует линейный массив равноотстоящих узлов. Это подобно оператору :, но дает прямой контроль над числом точек. Применяется в следующих формах:

· llnspace(a.b) — возвращает линейный массив из 100 точек, равномерно распределенных между а и b;



· linspace(a,b,n) — генерирует п точек, равномерно распределенных в интервале от а до b.

Пример:

» M-linspace(4.20.14)

М=

Columns I through 7

4.0000 5.2308 6.4615 7.6923 8.9231 10.153811.3846

Columns 8 through 14

12.615413.846215.076916.307717.538518.769220.0000

 

Создание массивов со случайными элементами

· р = randperm(n) — возвращает случайные перестановки целых чисел 1:n в векторе-строке. Пример:

» randperm(6)

ans =

Функция rand генерирует массивы случайных чисел, значения элементов которых равномерно распределены в промежутке (0, 1):

· rand(n) — возвращает матрицу размера nхn. Если n — не скаляр, то появится сообщение об ошибке;

· rand(m.n) или rand([m п]) — возвращают матрицу размера mxn;

· rand(m.n,p....) или rand([m n р...]) — возвращает многомерный массив;

· rand(size(A)) — возвращает массив того же размера и размерности, что и А, с элементами, распределенными по равномерному закону;

· rand (без аргументов) — возвращает одно случайное число, которое изменяется при каждом последующем вызове и имеет равномерный закон распределения;

· rand(' state') — возвращает вектор с 35 элементами, содержащий текущее состояние генератора случайных чисел с равномерным распределением. Для изменения состояния генератора можно применять следующие формы этой функции:

o rand('state' .s) — устанавливает состояние в s;

o rand( 'state' ,0) — сбрасывает генератор в начальное состояние;

o rand( 'state'. j) — для целых j, устанавливает генератор в j-е состояние;

o rand( 'state' ,sum(100*clock)) — каждый раз сбрасывает генератор в состояние, зависящее от времени.

Пример:

» Y=rand(4,3)

Y=

0.9501 0.8913 0.8214

0.2311 0.7621 0.4447

0.6068 0.4565 0.6154

0.4860 0.0185 0.7919

Проверить равномерность распределения случайных чисел можно, построив большое число точек на плоскости со случайными координатами. Это делается с помощью следующих команд:



» X=rand(1000,1);

» Y=rand(1000,1);

» plot(X,Y,'.')

Полученный при этом график показан на рис. 10.1. Нетрудно заметить, что точки довольно равномерно распределены на плоскости, так что нет оснований не доверять заданному закону распределения координат точек.

Рис. 10.1.Случайные точки с равномерным распределением координат на плоскости

Функция randn генерирует массив со случайными элементами, распределенными по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением, равным 1:

· randn(n) — возвращает матрицу размера nхn. Если n — не скаляр, то появится сообщение об ошибке;

· randn(m.n) или randn([m n]) — возвращают матрицу размера mxn;

· randn(m,n,p,...) или randn([m n р...]) — возвращает массив с элементами, значения которых распределены по нормальному закону;

· randn(size(A)) — возвращает массив того же размера, что и А, с элементами, распределенными по нормальному закону;

· randn (без аргументов) — возвращает одно случайное число, которое изменяется при каждом последующем вызове и имеет нормальное распределение;

· randn( 'state') — возвращает двухэлементный вектор, включающий текущее состояние нормального генератора. Для изменения состояния генератора можно применять следующие формы этой функции:

o randn('state',s) — устанавливает состояние в s;

o randn('state' ,0) — сбрасывает генератор в начальное состояние;

o randn('state', j) — для целых j устанавливает генератор в J-e состояние;

o randn('state', sum( 100*clock)) — каждый раз сбрасывает генератор в состояние, зависящее от времени.

Пример:

>>Y=randn(4.3)

Y =

-0.4326 -1.1465 0.3273

-1.6656 1.1909 0.1746

0.1253 1.1892 -0.1867

0.2877 -0.0376 0.7258

Проверить распределение случайных чисел по нормальному закону можно, построив гистограмму распределения большого количества чисел. Например, следующие команды

» Y=randn(10000,1);

» hist(Y,100)

строят гистограмму (рис. 10.2) из 100 столбцов для 10 000 случайных чисел с нормальным распределением.

Рис. 10.2.Гистограмма для 10 000 нормально распределенных чисел в 100 интервалах

Из рисунка видно, что огибающая гистограммы действительно близка к нормальному закону распределения.

В пакете расширения Statistics Toolbox можно найти множество статистических функций, в том числе для генерации случайных чисел с различными законами распределения и определения их статистических характеристик.

 

Конкатенация матриц

Конкатенацией называют объединение массивов, которое реализует следующая функция.

· С = cat (dim, А, В) — объединяет массивы А и В в соответствии со спецификацией размерности dim и возвращает объединенный массив; dim = 1 — горизонтальная конкатенация, dim = 2 — вертикальная, dim = 3 — многомерный массив размерности 3 и т. д.;

· С = cat(dim,Al,A2,A3,A4,...) объединяет все входные массивы (А1, А2, A3, А4 и т. д.) в соответствии со спецификацией размерности dim и возвращает объединенный массив;

· cat(2.A,B) — это то же самое, что и [А,В],асаt(,А,В) —то же самое, что и [А; В]. При записи cat (dim, С (:)) или cat (dim, С. field) эта функция применима к массивам ячеек или структур, содержащим численные матрицы. Пример:

» A =[2.4:3,5];B=[8,7;9.0];C=cat(1.A.B)

С =

2 4

3 5

8 7

9 0

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.