Получение лимонной кислоты 7 глава
Lactobacillus helveticus – сбраживает лактозу по гомоферментативному типу, очень сильный кислотообразователь (предельная кислотность в молоке – 300-350 оТ – более 2 % молочной кислоты). Оптимальная температура + 40-42 оС, не растет при 15 оС, max + 50-53 оС.
Lactobacillus lactis – гомоферментативный микроорганизм, более слабый кислотообразователь (до 300 оТ – около 1,6 % молочной кислоты). Оптимальная температура + 40-43 оС, не растет при 15 оС, max + 50-52 оС.
Lactobacillus plantarum - гомоферментативная молочнокислая палочка, обладает очень слабой кислотообразующей способностью (предельная кислотность в молоке – 140-150 оТ ). Некоторые штаммы не свертывают, а только подкисляют молоко. Оптимальная температура + 30-35 оС, не растет при 45 оС, пределы +15-40 оС.
Lactobacillus fermentum - гетероферментативная молочнокислая палочка. Практически не свертывает молоко. Оптимальная температура + 30-35 оС, не растет при 15 оС, растет при 45 оС.
Интенсивные исследования в области селекции микроорганизмов с использованием методов генной инженерии позволили разработать стандартизованные чистые культуры с четко определенными свойствами. Разрабатывают концентрированные культуры, использование которых не требует наличия заквасочного помещения и заквасочного оборудования на предприятии, специально обученного обслуживающего персонала. При производстве сметаны, творога или сыра такие концентраты вносят непосредственно в ванну или резервуар с молоком, сливками или нормализованной смесью.
Йогурт
Это один из древнейших продуктов, получаемых путем ферментации. После термообработки молоко заквашивают добавлением 2-3 % закваски йогурта. Температура при брожении поддерживается около 40 ºС. Главную роль здесь играют бактерии Streptococcus thermophillus и Lactobacillus bulgaricus. Для получения желаемой консистенции продукта, вкуса и запаха эти организмы должны содержаться в культуре приблизительно в равных количествах. Кислоту в начале заквашивания образует в основном Streptococcus thermophillus. Смешанные закваски нужно часто обновлять, поскольку повторные пересевы неблагоприятно сказываются на соотношении видов и штаммов бактерий: в них начинает доминировать Lactobacillus bulgaricus.
Своим характерным вкусом йогурт обязан молочной кислоте, получаемой из лактозы молока, и ацетальдегиду. Оба этих вещества вырабатывают Lactobacillus bulgaricus.
Сброженная пахта
Сброженный продукт получают из свежей пахты, а чаще из снятого молока путем добавления закваски, используемой при производстве масла. Эта закваска представляет собой смесь молочнокислых стрептококков (Streptococcus lactis или Streptococcus cremoris) и образующих ароматические вещества бактерий (Leuconostoc citrovorum и Leuconostoc dextranicum). И те, и другие микроорганизмы нужны для формирования полноценного вкуса и запаха пахты; стрептококки при этом доминируют. Роль молочнокислых стрептококков в закваске заключается в образовании молочной кислоты (она дает желаемый кисловатый вкус), свертывании молока и снижении рН до значений, при которых образующие ароматические вещества бактерии синтезируют наибольшее количество летучих кислот.
Сметана
Ее готовят почти так же, как сброженную пахту. К пастеризованным сливкам добавляют 0,5-1 % закваски, используемой при производстве масла (молочнокислые бактерии). Далее продукт выдерживают, пока концентрация кислоты не достигнет 0,6 %.
Бифидопродукты
Бифидопродукты представляют группу продуктов лечебно-профилактической направленности и относятся эубиотикам (биологически активным добавкам, обеспечивающим нормальный состав и функциональную активность микрофлоры кишечника). В большинстве бифидопродуктов используются бактерии вида Bifidobacterium bifidum.
Ассортимент бифидопродуктов:
- бифидокефир – вырабатывается на цельном или обезжиренном молоке с использованием кефирного грибка и закваски бифидобактерий или бактериального концентрата бифидобактерий;
- бифидойогурт или биойогурт– вырабатывается на цельном молоке с использованием заквасок на ацидофильной или болгарской палочках, термофильном стрептококке и обогащением закваской бифидобактерий или бактериальным концентратом бифидобактерий;
- бифидосметана или биосметана – вырабатывается на сливках с использованием заквасок на молочнокислых бактериях и обогащением закваской или бактериальным концентратом бифидобактерий;
- бифилин – вырабатывается из натурального коровьего молока путем сквашивания чистой культурой бифидобактерий, способных подавлять условно-патогенную микрофлору кишечника.
Диетические свойства кисломолочных продуктов
Кисломолочные продукты являются продуктами массового потребления, хотя обладают диетическими, а иногда и лечебными свойствами. Еще в конце 19 в. И.И. Мечников обратил внимание на важность нормальной деятельности микрофлоры, а в случае нарушения – на необходимость ее восстановления с помощью молочнокислых бактерий Lactobacillus acidophilus, предотвращающих развитие чужеродных микробов. Диетическими свойствами также обладают бактерии рода Bifidobacterium.
Некоторые продукты жизнедеятельности микроорганизмов обладают биологической активностью: например, витамины, антибиотики. Кисломолочные продукты, воздействуя на секреторную функцию желудка, возбуждают аппетит и способствуют быстрому выделению ферментов, которые ускоряют процесс переваривания пищи, нормализуют деятельность кишечника и благоприятно воздействуют на нервную систему. Диетические свойства кисломолочных продуктов, кроме того, объясняются их легкой усвояемостью за счет частичного распада белков молока.
Приготовление сыра
Сыр готовят из творога, полученного в результате свертывания казеина цельного или обезжиренного молока. Свертывание казеина происходит под влиянием микробных ферментов и молочной кислоты или с помощью сычужного фермента. В свертывании принимают участие молочнокислые бактерии Streptococcus lactis, S. cremoris, S. diacetilactis, Leuconostoc citrovorum. В результате свертывания белка кальций отделяется от казеина, последний выпадает в виде хлопьев водонерастворимой казеиновой кислоты. Для изготовления различных видов сыра используют овечье, козье, коровье или кобылье молоко. В зависимости от технологии сыроварения сыворотку полностью или частично отделяют от творога на фильтр-прессе. Творог засевают культурами микроорганизмов в соответствии с сортом получаемого сыра. При его созревании под влиянием выделяемых микроорганизмами ферментов химический состав и физические свойства творога существенно меняются. Большое разнообразие сортов сыра объясняется природой и свойствами микробных культур, служащих исходными культурами при свертывании молока, температурой изготовления и наличием или отсутствием вторичной микрофлоры, растущей на сыре. Некоторые виды сыров специально заражают спорами плесневого гриба Penicillium roquefortii. Рост плесени в мякоти сыра придает ему характерный вкус и аромат (Датский голубой, Горгонзола, Рокфор и др.) Острый привкус сыра Рокфор также обусловлен действием микробной липазы – фермента, расщепляющего жиры молока с образованием жирных кислот (капроновой, каприновой, каприловой и др.). Другой сорт сыра с плесенью – Камамбер – получают с помощью гриба Penicillium camambertii, готовят по той же технологии.
Созревание сыра длится от нескольких недель до нескольких месяцев (для сыра Чеддер – 8 мес.). В первые недели созревания число микроорганизмов в массе сыра увеличивается и достигает нескольких сотен миллионов на 1 г сыра, потом число живых бактерий и дрожжей снижается. Сыр должен созревать при пониженной температуре (для сыра Рокфор – не выше 9 °С).
Коровье масло
Из молочных продуктов проще всего получать коровье масло. В зависимости от сорта производимого масла используют сливки с концентрацией жира от 30-32 до 40 %. При их сбивании эмульсия масла в воде превращается в эмульсию воды в масле.
При производстве масла для улучшения вкуса и лучшей сохранности используют особые культуры бактерий. Улучшение вкуса было достигнуто путем создания специальных штаммов бактерий, отобранных по способности синтезировать нужные вещества, влияющие на вкус. Первыми для этой цели были использованы штаммы Streptococcus lactis и близких видов, а затем – смешанные культуры, включающие Streptococcus lactis, Leuconostoc citrovorum и L. dextranicum.
Помимо улучшения вкуса таким путем удается устранить и некоторые нежелательные привкусы. Перспективный способ доработки масла основан на добавлении липаз (ферментов, расщепляющих липиды). Внедрение его позволит пускать масло в продажу непосредственно из маслобойки.
Новые продукты
Известно, что некоторые люди не переносят лактозу; для них можно выпускать молоко, обработанное b-галактозидазой – ферментом, который уменьшает содержание лактозы. Для этой цели нужно разработать недорогой промышленный способ производства такого молока. b-галактозидазу получают из дрожжей, плесневых грибов и бактерий.
8.2. Биотехнологические процессы в производстве
мясных и рыбных продуктов
Использование микроорганизмов при производстве мясопродуктов
Технология производства многих современных мясопродуктов обязательно включает в себя молочнокислое брожение. В сырокопченых колбасах и в рассолах для окороков, грудинки, корейки молочнокислые бактерии подавляют рост гнилостных микроорганизмов и участвуют в формировании вкуса и аромата готового продукта. В мясопродукты, требующие бактериальной ферментации, обычно добавляют закваску, содержащую специально отобранные штаммы стрептококков, лактобацилл и педиококков. В этом случае на упаковке должно быть указано, что в состав продукта входят бактериальные культуры.
Применение ферментных препаратов
С целью размягчения мяса, облегчения его обработки широко применяются ферментные препараты протеолитического действия. Использование ферментных препаратов в промышленных масштабах связано с технологическими задачами равномерного распределения ферментов при внесении их в мясо. Применяются следующие способы обработки мяса протеолитическими ферментами:
s прижизненное введение препарата путем инъекций;
s внутримышечное шприцевание мясной туши;
s обработка поверхности мяса путем разбрызгивания раствора фермента или нанесения порошкообразных препаратов на поверхность мяса;
s погружение мяса в раствор ферментов после механического рыхления;
s восстановление дегидратированного сублимацией мяса в растворе ферментов.
Каждый из этих способов имеет свои преимущества и недостатки.
1. Введение раствора ферментного препарата через кровеносную систему путем инъекций в организм животного при жизни. Прижизненное введение препарата обеспечивает его равномерное распределение и хороший размягчающий эффект, сокращает время созревания, увеличивает количество мяса, пригодного для жарения. Вместе с тем, следует отметить, что при введении достаточно высоких доз препарата возникает анафилактический шок и нарушение нормальных функций организма.
2. Обработка поверхности мяса путем разбрызгивания раствора фермента или нанесения порошкообразных препаратов на поверхность мяса. Способ имеет ограниченное применение ввиду неравномерного преобразования белковых структур: мясо на поверхности размягчается слишком сильно, а внутри – недостаточно.
3. Внутримышечное шприцевание мясной туши. Наибольший эффект получен при введении препаратов ферментов в мышечную ткань многократными уколами. При этом эффективность способа значительно повышается при введении ферментов под давлением вместе со стерильным вакуумом или азотом. Газы, разрыхляя структуру мышечной ткани, способствуют лучшему распределению фермента между клетками. Используется еще один способ – безыгольный - введение препаратов в мясо под сверхвысоким давлением (200 · 10 5 Па).
4. Погружение мяса в раствор ферментов после механического рыхления. Простое погружение мяса в ферментный раствор малоэффективно, поскольку в данном случае наибольшим изменениям подвергается лишь поверхность мяса (наступает полный лизис структур мышечной ткани), в то время как в глубоких слоях изменения минимальны. Сочетание предварительного механического рыхления с последующим погружением мяса в раствор ферментов, а также «массирование» мяса в ферментном растворе дают хорошее качество мяса и малые потери влаги при его обработке.
5. Хорошие результаты дает восстановление дегидратированного (обезвоженного) сублимацией мяса в водном растворе размягчающего препарата. При этом создаются условия для контакта фермента не только с поверхностью мяса, но и с внутренними структурами путем проникновения раствора в хорошо развитую систему пор и капилляров. В процессе регидратации мяса обеспечивается равномерный по всему объему контакт фермента с основными белковыми структурами. В результате этого достигается максимальное размягчение мяса при минимальном расходе фермента. Положительное действие на мягчение мяса оказывает поваренная соль.
Используемые протеолитические ферментные препараты должны отвечать определенным требованиям:
ü иметь высокий температурный оптимум действия;
ü осуществлять эффективный гидролиз в кисло-нейтральной области рН;
ü обладать специфичностью к гидролизу миозина и особенно белков внутримышечной соединительной ткани – коллагена и эластина (то есть иметь сходность действия с катепсинами, коллагеназой и эластазой);
ü быть безвредными для организма человека.
Для обработки мышечной ткани применяют ферментные препараты животного, растительного и микробного происхождения. Из ферментов животного происхождения высокой коллагеназной и эластазной активностью обладает фермент панкреатин, получаемый из поджелудочной железы свиньи. Иногда его применяют в смеси с ферментами трипсином, химотрипсином, пепсином. Однако ферменты животного происхождения имеют весьма ограниченные сырьевые источники.
Среди группы ферментов растительного происхождения для обработки мышечной ткани используют папаин, фицин, бромелаин и другие. Например, папаин применяют как размягчитель жесткого мяса. Он используется при созреваниия мяса, изготовлении полуфабрикатов, получении гидролизатов. Следует отметить, что эти протеазы также не могут полностью удовлетворить запросы промышленности ввиду дефицита сырья для их получения, малого выхода при переработке растений, а, следовательно, высокой стоимости.
Протеиназы микробного происхождения имеют ряд преимуществ по сравнению с другими источниками: неограниченность сырьевой базы, относительно простая технология получения, невысокая стоимость и др. Кроме того, микробные протеиназы, как правило, способны к более глубокой деструкции белков, в том числе многих фибриллярных, а также обладают широким спектром действия на различные субстраты. Продуценты ферментов протеолитического действия рассматривались в п. 5.5.
Искусственно внесенные в сырье препараты протеаз обеспечивают эффект преобразования белковых структур, аналогичный автолитическому. Однако процессы созревания мяса под их влиянием протекают в 3-5 раз интенсивнее и заканчиваются в более короткий срок. При этом интенсивность и глубина превращений белковых структур зависит от дозировки препаратов, физико-химических условий, продолжительности обработки. Ферментная обработка сырья придает мясу нежную консистенцию, нужные вкус и аромат.
Источники белка различного происхождения
В связи с дефицитом белка животного происхождения, а также с целью снижения себестоимости колбасных изделий, используются другие источники белка, частично заменяющие животный белок. Это растительные белки, молочные белки, белки микробного происхождения и белки крови.
Почти во всех странах, где достаточно развита мясная индустрия, широко используется источник белка на основе растений. Функциональные свойства и пищевая ценность в сочетании с экономической эффективностью выдвигают растительные белки на одно из первых мест в ряду заменителей мяса и белковых ингредиентов при производстве мясных продуктов. При этом к растительным белковым добавкам предъявляются следующие требования: сохранение пищевой ценности продуктов; повышение стойкости при хранении или улучшение органолептических свойств; обеспечение необходимыми ингредиентами продуктов, изготовляемых для потребителей со специфическими запросами; применение при условии, что добавка не маскирует недоброкачественность сырья или низкий санитарно-технический уровень производства.
Растительные белковые препараты в настоящее время используют не только в качестве добавок, способствующих повышению выхода традиционных мясных продуктов, но и качестве основного компонента комбинированных мясных изделий. Особое место отводится соевым белковым препаратам. Основными исходными продуктами являются: обезжиренная соевая мука, содержащая 50 % белка; соевые концентраты с содержанием белка 70 %; соевые изоляты с 90 %-ным содержанием белка. Помимо сои белковые препараты изготавливают из гороха, подсолнечника, кукурузы, хлопчатника и других культур. Подобно сое, на их основе получают муку, концентраты, изоляты с высоким содержанием белка.
Для производства низкокалорийных мясопродуктов применяют овощные добавки, которые не получили широкого распространения в нашей стране. При замене овощными компонентами равного количества говяжьего фарша калорийность продукта снижается в 5-6 раз. Введение овощных добавок и их смесей позволяет сэкономить основное сырье и улучшить качество (усвояемость) продукта. Успешно используются в рецептурах фаршевых продуктов и консервов овощные добавки из свеклы, моркови, картофеля, тыквы и др.
При производстве колбасных изделий широко используются молочные белки, которые имеют высокую биологическую ценность и функциональные свойства. В частности, широко применяются: пищевой казеин, казеинаты, копреципитаты в растворимой и нерастворимой формах, сывороточные и молочно-белковые концентраты. Эти продукты получают при переработке молока и выделении белков каким-либо способом. По аминокислотному составу эти продукты значительно превышают многие другие белковые препараты. В отличии от растительных, молочные белки легко расщепляются под действием ферментов ЖКТ и образуют при этом аминокислоты и пептиды, быстро всасывающиеся в кровь. В отличии от мясных, молочные белки не содержат пуриновых оснований, избыток которых в организме может ухудшать обмен веществ. Разработанная в последние годы технологии получения гидролизатов белков обезжиренного молока и сыворотки с использованием протеаз микробного и животного происхождения позволяет получать широкую гамму продуктов-полуфабрикатов, имеющих высокую пищевую ценность, сбалансированный аминокислотный состав.
Большое внимание уделяется перспективам использования продуктов микробного синтеза, особенно белкам биомассы дрожжей и одноклеточных организмов, выращенных на нефтяных субстратах. Белки пивных дрожжей повышают биологическую ценность мясопродуктов, так как увеличивают общее содержание белков, минеральных веществ, витаминов группы В. Благодаря частичному автолизу клеток, они придают продуктам приятный специфический вкус и запах за счет содержащихся в них свободных аминокислот и других веществ. Их использование целесообразно не только с целью экономии основного сырья, но и для «маскировки» вкуса и запаха немясных компонентов в продукте, например, сои, других растительных и овощных белковых добавок.
Использование вторичных продуктов переработки животного сырья
При переработке сельскохозяйственных животных образуется перечень вторичных продуктов, богатых ценным белком: кровь и ее производные, кость, хрящ, сухожилия, шкуры, мездра, рога, копыта и т.д. Из перечисленных отходов на пищевые цели находит применение кровь (как источник белка). Остальные продукты применяются недостаточно для пищевых и кромовых целей, хотя имеют высокую биологическую ценность. Несмотря на высокое содержание незаменимых аминокислот, в исходном виде это сырье представляет лишь потенциальный источник белка ввиду слабой доступности к гидролизу со стороны пищеварительных ферментов (низкая перевариваемость и усвоение), а также невыраженных функциональных свойств (плохая растворимость и эмульгирующая способность, жесткость и т.д.). Наиболее эффективным средством решения данной проблемы является биотехнология, а именно использование ферментов. Особенно здесь полезны ферменты микроорганизмов, способные расщеплять труднодоступные белки животных, главным образом кератин, коллаген, эластин. Ферментация сырья позволяет улучшить пищевые свойства, функциональность и биологическую ценность продуктов.
Вопросы для самопроверки
1. Что такое закваска, и как готовят лабораторную и производственную закваски для кисломолочных продуктов ?
2. Какие бывают формы заквасок и условия их хранения ?
3. Расскажите о пороках заквасок.
4. Как классифицируют кисломолочные продукты в зависимости от состава микрофлоры заквасок ?
5. Перечислите реакции, протекающие в молоке при сквашивании.
6. Какие микроорганизмы входят в состав заквасок для получения кисломолочных продуктов ?
7. Состав заквасок для получения таких продуктов, как йогурт, сметана, пахта.
8. Ассортимент бифидопродуктов.
9. Расскажите о применении ферментов и живых микроорганизмов в сыроделии.
10. Получение коровьего масла.
11. Назовите способы обработки мяса ферментными препаратами.
12. В чем преимущества и недостатки каждого способа ?
13. Перечислите требования, которые предъявляют к ферментным препаратам, применяемым при переработке мяса.
14. Белки из каких источников вводят в состав мясных продуктов ?
15. Расскажите о возможностях использования вторичных продуктов переработки животного сырья.
ТЕМА 9. ПИЩЕВАЯ БИОТЕХНОЛОГИЯ ПРОДУКТОВ
ИЗ СЫРЬЯ РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ
9.1. Бродильные производства
Алкогольные напитки получают путем сбраживания сахаросодержащего сырья, в результате которого образуются спирт и углекислый газ. Первыми напитками, полученными на основе спиртового брожения, являются вино и пиво. До появления работ Пастера в конце XIX века о сути происходящих при брожении процессов и их механизмах было известно очень мало. Пастер показал, что брожение осуществляется без доступа воздуха живыми клетками дрожжей, при этом сахар превращается в спирт и углекислый газ. Сбраживание осуществляется дрожжами рода Saсcharomyces. В одних случаях используется природный сахар (например, содержащийся в винограде, из которого делают вино), в других сахара получают из крахмала (например, при переработке зерновых культур в пивоварении). Наличие свободных сахаров обязательно для спиртового брожения при участии Sacсharomyces, так как эти виды дрожжей не могут гидролизовать полисахариды.
В производстве спиртных напитков наиболее часто применяют штаммы дрожжей Sacсharomyces сerevisiae или Sacсharomyces carlsbergensis. Главное различие между ними заключается в том, что S. carlsbergensis могут полностью сбраживать раффинозу, а S. сerevisiae к этому не способны.
Требования, предъявляемые к дрожжам при производстве алкогольных напитков, следующие: дрожжи должны обеспечивать полноту сбраживания, высокую его скорость и легко выпадать в осадок.
Пивоварение
Выбор штамма пивных дрожжей является наиболее важным условием, определяющим свойства пива: его цвет, вкус и аромат, крепость.
В 1880 г. датский ученый Хансен выделил чистые культуры дрожжей и использовал их при производстве пива. Использование индивидуальных штаммов дрожжей в пивоварении сегодня стало нормой. Sacсharomyces сerevisiae представляют собой дрожжи поверхностного и глубинного брожения: они применяются в производстве эля. Sacсharomyces carlsbergensis – дрожжи глубинного брожения, их используют в производстве легкого пива. Некоторые пивовары используют дрожжи Sacсharomyces uvarum.
К числу наиболее важных свойств относят продуктивность, способность формировать осадок, сбраживать мальтотриозу и т.д. Принимаются во внимание и вкусовые свойства получающегося пива, то есть образование веществ, ответственных за их формирование.
Для осуществления спиртового брожения прежде всего необходимо, чтобы в пивоваренном сырье образовался сахар. Традиционным источником нужных для этого полисахаридов всегда был ячмень, но в качестве дополнительных используются и другие виды углеводосодержащего сырья. Ячменный солод и прочие компоненты измельчают и смешивают с водой при температуре до 67 °С. В ходе перемешивания природные ферменты ячменного солода разрушают углеводы зерна. Пивное сусло после гидролиза крахмала содержит мальтозу, глюкозу, мальтотриозу, которые сбраживают сахаромицеты, а также декстрины и мальтотетраозу, которые не используются пивными дрожжами.
Полученное сусло отделяют от нерастворимых остатков. Добавив хмель, его кипятят в медных котлах. В процессе кипячения прекращается ферментативная активность, осаждаются белки из сусла и экстрагируются вкусовые компоненты хмеля. Для производства пива с определенным содержанием алкоголя сусло после кипячения доводят до нужной плотности. Удельная плотность сусла определяется содержанием экстрагированных сахаров, подлежащих сбраживанию. Затем в сусло засевают штамм пивных дрожжей, которые сбраживают сахара в спирт и углекислый газ (в процессе брожения дрожжевая биомасса увеличивается в пять раз). Ряд других соединений, придающих пиву его особенный вкус, образуются в незначительных количествах. Среди них амиловый, изоамиловый и фенилэтиловый спирты, концентрация которых составляет около нескольких миллиграммов на 1 л, уксусная и масляная кислоты, а также эфиры. По истечении определенного времени брожение заканчивается, дрожжи отделяют от пива и выдерживают его некоторое время для созревания. После фильтрации и других необходимых процедур (пастеризации) пиво готово.
Перспективы развития пивоварения
Для упрощения технологии пивоварения методами генной инженерии был получен штамм пивных дрожжей Sacсharomyces сerevisiae с внесенным в ДНК геном бактерии Bacillus subtilis, детерминизирующим β-глюконазу. Новый штамм не требует предварительного солодования ячменя, так как способен сбраживать крахмал.
Поскольку наиболее популярными являются светлые сорта пива (с низким содержанием углеводов), с помощью методов генетической инженерии исследователи пытаются создать пивные дрожжи, способные сбраживать декстрины.
Так как пиво высокого качества можно получить только при отсутствии в сбраживаемом растворе посторонних микроорганизмов, проводятся исследования в этом направлении. Путем скрещивания дрожжей, имеющих агрессивные свойства, с промышленными пивными дрожжами получен штамм пивных дрожжей, убивающих дикие дрожжи. Селекционеры также пытаются получить штамм пивных дрожжей, уничтожающий бактериальную микрофлору.
Усовершенствовать пивные дрожжи можно также, прививая им способность к флокуляции (слипанию) клеток в конце ферментации, что позволяет удалить дрожжи из готового пива. Флокуляция зависит от состава среды, условий культивирования, но одновременно является генетически определяемым свойством, контролируемым генами.
Пивоварение является весьма консервативной отраслью пищевой промышленности. Тем не менее, в данной отрасли постоянно внедряются новые технологические приемы, позволяющие интенсифицировать производственные процессы. Среди них наибольший интерес представляют непрерывные процессы, например, непрерывное солодование, непрерывное брожение пивного сусла в специальных бродильных колоннах с рециркуляцией пивных дрожжей при использовании флокулирующихся штаммов.
Трудоемкий и продолжительный процесс солодования зерна заменяют его обработкой комплексом осахаривающих ферментов микробного происхождения и др.
Виноделие
Как показали археологические раскопки, развитие виноделия началось около 5000 лет назад.
Необходимое условие любого бродильного процесса – наличие сахара в сырье. Так, в производстве вина используется сахар виноградного сока. Почти все вино в мире делают из винограда одного вида – Vitis vinifera. Сок этого винограда – прекрасное сырье для производства вина. Он богат питательными веществами, служит источником образования приятных аромата и вкуса, содержит много сахара; его природная кислотность подавляет рост нежелательных микроорганизмов.
Виноделие, в отличии от пивоварения, до самого последнего времени было основано на использовании местных дрожжей дикого типа. Единственная обработка, которой подвергали виноград до отжима, - окуривание сернистым газом, чтобы сок не темнел. Корме того, сернистый газ подавляет деятельность не винных дрожжей; это позволяет винным дрожжам, которые менее чувствительны к нему, осуществлять брожение без помех. В прошлом именно с помощью этих диких дрожжей и осуществляли спиртовое брожение. В тех районах, где виноделием начали заниматься недавно, широко применяются дрожжевые закваски. Связано это с тем, что желаемая микрофлора может и отсутствовать, а инокуляция стандартной культурой дрожжей позволяет получать вина с нужными свойствами. Кроме того, количество используемого сернистого газа ограничено законодательно, и это побуждает применять дрожжевые культуры-закваски. Используются дрожжи-сахаромицеты: Sacсharomyces сerevisiae, S. oviformis, S. ellipsoideus. Виноделы не очень-то полагаются на дрожжи дикого типа, если нет уверенности, что конкуренция со стороны не-винных дрожжей не подавлена. Использование заквасок дает ряд преимуществ: сокращается лаг-период размножения дрожжей, образуется продукт с известными свойствами, уменьшается вероятность появления нежелательного вкуса, поскольку в брожении не участвуют дикие не-винные дрожжи. Хересные винные дрожжи (Sacсharomyces oviformis), способные переокислять спирт в продукты, придающие вину хересный букет, чувствительны к концентрациям спирта выше 15 %. Культивируя исходный штамм дрожжей при постепенном повышении концентрации спирта до 18 %, удалось выделить штамм, способый к образованию хереса в этих условиях.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|