Сделай Сам Свою Работу на 5

Тема 3.4 Внешние интерфейсы





Студент должен:

иметь представление:

· об интерфейсных подключениях периферийных устройств ПК

знать:

· назначение и технические характеристики интерфейсов: RS-232, LPT, USB, FireWire;

· структуру разъемов шин: RS-232, LPT, USB, FireWire

уметь:

· подключать периферийные устройства к интерфейсам RS-232, LPT, USB, FireWire

Внутренние интерфейсы RS-232, LPT, USB, FireWire. Назначение и технические характеристики. Структура разъемов шин

Методические указания

USB (англ. Universal Serial Bus) — универсальная последовательная шина, предназначенная для периферийных устройств.

Шина USB представляет собой последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств. Для высокоскоростных устройств лучше применять FireWire.

USB-кабель представляет собой две витые пары: по одной паре происходит передача данных в каждом направлении (дифференциальное включение), а другая пара используется для питания периферийного устройства (+5 В). Благодаря встроенным линиям питания, обеспечивающим ток до 500 мА, USB часто позволяет применять устройства без собственного блока питания (если эти устройства потребляют ток силой не более 500 мА).



К одному контроллеру шины USB можно подсоединить до 127 устройств через цепочку концентраторов (они используют топологию "звезда").

В отличие от многих других стандартных типов разъемов, для USB характерны долговечность и механическая прочность. История

Стандарт разработали семь компаний: Compaq, Digital Equipment, IBM, Intel, Microsoft, NEC и Northern Telecom.

Летом 1996 года на рынке появились первые компьютеры с портами USB.

USB 1.1

Технические характеристики:

· высокая скорость обмена — 12 Мбит/с

· максимальная длина кабеля для высокой скорости обмена — 3 м

· низкая скорость обмена — 1,5 Мбит/с

· максимальная длина кабеля для низкой скорости обмена — 5 м

· максимальное количество подключённых устройств (включая размножители) — 127

· возможно подключение устройств с различными скоростями обмена

· напряжение питания для периферийных устройств — 5 В

· максимальный ток потребления на одно устройство — 500 мA

USB 2.0 отличается от USB 1.1 только большей скоростью и небольшими изменениями в протоколе передачи данных для режима Hi-speed (480Мбит/сек). Существуют три скорости работы устройств USB 2.0 :



Low-speed 10—1500 Кбит/c (используется для интерактивных устройств: Клавиатуры, мыши, джойстики)

Full-speed 0,5—12 Мбит/с (аудио/видео устройства)

Hi-speed 25—480 Мбит/с (видео устройства, устройства хранения информации)

На самом деле хотя и в теории скорость USB 2.0 может достигать 480Мбит/с, устройства типа жёстких дисков и вообще любых носителей информации в реальности никогда не достигают такой скорости обмена по шине, хотя и могут развивать её. Это можно объяснить достаточно большими задержками шины USB между запросом на передачу данных и собственно началом передачи. Например, другая шина FireWire хотя и обеспечивает максимальную скорость в 400Мбит/с, что на 80Мбит/с меньше чем у USB, в реальности позволяет достичь бо́льших скоростей обмена данными с жёсткими дисками и другими устройствами хранения информации.

USB OTG (аббр. от On-The-Go) — дальнейшее расширение спецификации USB 2.0, предназначенное для лёгкого соединения периферийных USB-устройств друг с другом без необходимости подключения к ПК. Например, цифровой фотоаппарат можно подключать к фотопринтеру напрямую, если они оба поддерживают стандарт USB OTG. Этот стандарт возник из-за резко возросшей в последнее время необходимости надёжного соединения различных USB-устройств без использования ПК. В данной спецификации устройства обходятся без персонального компьютера, т.е. выступают как одноранговые приемопередатчики(на самом деле это только создаётся такое ощущение. В действительности же устройства определяют кто из них будет мастер-устройством, а кто подчиняемым. А одноранговым интерфейс usb быть не может).



USB wireless

Новейшая технология USB (официальная спецификация стала доступна только в мае 2005 года). Позволяет организовать беспроводную связь с высокой скоростью передачи информации (до 480 Мбит/с на расстоянии 3 метра и до 110 Мбит/с на расстоянии 10 метров).

CompactFlash — формат флэш-памяти, появился одним из первых. Формат разработан компанией SanDisk Corporation в 1994 году.

Спецификацию для данного формата составляет Ассоциация CompactFlash. По мере развития технологий данный формат развивался. Вначале был выпущен CompactFlash Type II (ёмкость до 320 Мбайт, скорость чтения до 1,5 Мбайт/с, записи — 3 Мбайт/с), затем CompactFlash 2.0 или CF+ (скорость чтения достигла 8 Мбайт/с, записи — 6,6 Мбайт/с) и в конце 2004 года появилась третья версия стандарта (поддерживает режимы UDMA33 и UDMA66, скорость передачи данных увеличена до 66 Мбайт/с).

В 2005 году максимальный объём накопителей с интерфейсом CompactFlash достиг 12 Гбайт.

Размеры карт CompactFlash составляют 42 мм на 36 мм, толщина составляет 3,3 мм, CompactFlash Type II — 5 мм. Карты CompactFlash Type I могут вставляться в слоты обоих типоразмеров, CompactFlash Type II — только в слот для CompactFlash Type II. CompactFlash обоих типоразмеров имеет 50-контактные разъёмы.

CompactFlash описан в CF+ and CompactFlash Specification Revision 3.0 (от 23 декабря 2004 года).

Стандарт специфицирует:

· размеры и механические свойства устройств CompactFlash, а также типы применяемых разъёмов;

· электрический интерфейс (сигналы шины, циклы шины, а также цоклёвка разъёмов);

· метаформат;

· программную модель устройств CompactFlash;

· адаптеры для подключения устройств CompactFlash к шине PCMCIA.

В соответствии со стандартом, интерфейс накопителей CompactFlash электрически совместим с интерфейсом IDE.

IEEE 1394 (FireWire, i-Link) — последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами.

Компания Apple продвигает стандарт под торговой маркой FireWire. Компания Sony продвигает стандарт под торговой маркой i.LINK.

Преимущества

Цифровой интерфейс — позволяет передавать данные между цифровыми устройствами без потерь информации

Небольшой размер — тонкий кабель заменяет груду громоздких проводов

Простота в использовании — отсутствие терминаторов, идентификаторов устройств или предварительной установки

Горячее подключение — возможность переконфигурировать шину без выключения компьютера

Небольшая стоимость для конечных пользователей

Различная скорость передачи данных — 100, 200 и 400 Мбит/с (800, 1600Мбит/с IEEE 1394b)

Гибкая топология — равноправие устройств, допускающее различные конфигурации

Высокая скорость — возможность обработки мультимедиа-сигнала в реальном времени

Открытая архитектура — отсутствие необходимости использования специального программного обеспечения

Наличие питания прямо на шине (маломощные устройства могут обходиться без собственных блоков питания). До полутора ампер и напряжение от 8 до 40 вольт.

Подключение до 63 устройств.

Шина IEEE 1394 может использоваться с:

Компьютерами

Аудио и видео мультимедийными устройствами

Принтерами и сканерами

Жёсткими дисками, массивами RAID

Цифровыми видеокамерами и видеомагнитофонами

Организация уcтройств IEEE 1394

Уcтройства IEEE 1394 огранизованы по 3 уровневой схеме – Transaction, Link и Physical, соответствующие трем нижним уровням модели OSI.

Transaction Layer - маршрутизация потоков данных с поддержкой асинхронного протокола записи-чтения. Link Layer - формирует пакеты данных и обеспечивает их доставку. Physical Layer - преобразование цифровой информации в аналоговую для передачи и наоборот, контроль уровня сигнала на шине, управление доступом к шине.

Связь между шиной PCI и Transaction Layer осуществляет Bus Manager. Он назначает вид устройств на шине, номера и типы логических каналов, обнаруживает ошибки.

Данные передаются кадрами длиной 125 мксек. В кадре размещаются временные слоты для каналов. Возможен как синхронный, так и асинхронный режимы работы. Каждый канал может занимать один или несколько временных слотов. Для передачи данных устройство-передатчик просит предоставить синхронный канал требуемой пропускной способности. Если в передаваемом кадре есть требуемое количество временных слотов для данного канала, поступает утвердительный ответ и канал предоставляется.

RS-232 — это стандартный электрический интерфейс для последовательной передачи данных, поддерживающий асинхронную связь.

Этот стандарт соединения оборудования был разработан в 1969 году рядом крупных промышленных корпораций и опубликован Ассоциацией электронной промышленности США (Electronic Industries Association — EIA). Международный союз электросвязи ITU-T использует аналогичные рекомендации под названием V.24 и V.28. В СССР подобный стандарт описан в ГОСТ 18145-81.

Стандартная скорость передачи для RS-232 — 9600 бит/сек на расстояние до 15 м. Существует в 8-, 9-, 25- и 31-контактных вариантах разъёмов. В настоящий момент чаще всех используется 9-контактный разъем.

В общем случае описывает четыре интерфейсные функции:

определение управляющих сигналов через интерфейс;

определение формата данных пользователя, передаваемых через интерфейс;

передачу тактовых сигналов для синхронизации потока данных;

формирование электрических характеристик интерфейса.

Вопросы для самоконтроля:

1. Внутренние интерфейсы RS-232, LPT, USB, FireWire.

2. Назначение и технические характеристики.

3. Структура разъемов шин

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.