Практическая работа 6. Проекционные аппараты
Студент должен:
иметь представление:
· об устройствах отображения информации
знать:
· назначение, типы, функции проекционных аппаратов;
· назначение и принцип работы оверхед- проектора и ЖК панели;
· назначение и принцип работы мультимедийного проектора.
уметь:
· подключать проекционные аппараты;
· настраивать проекционные аппараты;
· работать с проекционными аппаратами.
Тема 5.4 Устройства формирования объемных изображений
Студент должен:
иметь представление:
· об устройствах отображения информации
знать:
· назначение, виды устройств формирования объемных изображений
Устройства формирования объемных изображений: назначение, принцип действия стереоскопа, способы селекции. VR-шлемы. 3D- очки. 3D мониторы. 3D- проекторы
Методические указания
Устройства формирования объемных (трехмерных) изображений появились в качестве весьма дорогостоящих и недостаточно совершенных элементов системы виртуальной реальности. Однако в настоящее время эти устройства интенсивно совершенствуются, постепенно превращаясь в непременный атрибут домашнего мультимедийного ПК, поскольку объемный характер изображения имеет важнейшее значение для создания у пользователя подсознательного ощущения реальности наблюдаемой сцены.
По своей конструкции такие устройства принципиально отличаются от традиционных мониторов, поскольку в их основе лежит способ формирования трехмерных изображений, основанный на эффекте бинокулярного зрения, или стереозрения.
Шлемы виртуальной реальности (VR-шлемы)
Шлемы виртуальной реальности (VR-шлемы), называемые также кибершлемами, являются в настоящее время наиболее совершенными устройствами формирования трехмерных изображений. Помимо наличия двух индивидуальных экранов для каждого глаза VR-шлемы, благодаря своей конструкции, обеспечивают отсечение поля периферийного зрения человека, что усиливает эффект проникновения в виртуальный компьютерный мир.
В VR-шлемах используются миниатюрные экраны, выполненные на основе активных ЖК-матриц. Каждая из ЖК-матриц формирует цветное изображение, которое, благодаря особой конструкции шлема, видит только один глаз. Помимо экранов VR-шлем снабжен стереофоническими головными телефонами и микрофоном. Узел шлема, объединяющий в себе эти матрицы и органы регулировки, называют в и з о р о м. Визор дает возможность регулировать расстояние между матрицами по горизонтали, которое должно соответствовать расстоянию между зрачками пользователя, называемому IPD (Inter Pupil Distance). Визоры некоторых моделей шлемов оборудованы специальной оптической системой автоматического определения IPD, исключающей необходимость в индивидуальной настройке шлема.
Основным недостатком VR-шлема является недостаточно высокое разрешение стереоскопического изображения. Это обусловлено ограниченным количеством элементов ЖК-матрицы и малым расстоянием между глазом и визором, что делает зернистость ЖК-матриц заметной.
Важнейшей особенностью VR-шлемов является наличие так называемой системы виртуальной ориентации (СВО) (Virtual Orientation System — VOS), которая отслеживает движение головы и в соответствии с ним корректирует изображение на экранах. В случае поворота головы в одну сторону панорамное изображение «прокручивается» через ЖК-матрицы в противоположном направлении. В результате у пользователя возникает иллюзия стабильности наблюдаемой картины, ощущение реальности изображения. В зависимости от принципа действия и типа используемого поля различают магнитные, ультразвуковые и инерциальные СВО. Магнитные СВО распространены наиболее широко. В них используются миниатюрные магнитные датчики (катушки индуктивности). Магнитная СВО включает в себя блок внешних неподвижных передатчиков, выполняющих роль радиомаяков; датчик-приемник, расположенный на шлеме; системный электронный блок, который формирует электрические сигналы, поступающие на передатчик, и обрабатывает сигналы, принятые приемником. Интенсивность и фаза принятых сигналов зависят от расстояния между передающими и приемными катушками, а также от их взаимной ориентации. Обрабатывая передаваемые и принимаемые сигналы, системный электронный блок вычисляет пространственные координаты приемника относительно передатчика. Результаты вычислений передаются в PC через стандартный последовательный интерфейс RS-232 с частотой 50 — 60 Гц.
В ультразвуковых СВО вместо магнитных используются малогабаритные пьезокерамические преобразователи, выполняющие функции передатчиков и приемников. Обычно используются три передатчика и приемника, размещенные в шлеме. Системный блок посылает на передатчики электрический сигнал и регистрирует ультразвуковой сигнал. Измеряя временную задержку между посланным и принятым сигналом, а также зная скорость распространения звуковой волны (около 330 м/с), можно достаточно точно определить расстояние между передатчиком и приемником. Путем обработки результатов измерений расстояния между тремя парами датчиков рассчитывают положение и ориентацию шлема (головы пользователя) в пространстве.
Инерциальные СВО используются в VR-шлемах моделей, предназначенных в основном для профессионального применения. Свое название они получили благодаря использованию в них инерци-альных датчиков — гироскопов и акселерометров, не требующих для своей работы магнитных или ультразвуковых полей. С их помощью создается независимая инерциальная система координат, в которой отслеживается положение головы пользователя.
В качестве входного сигнала для VR-шлема может использоваться либо видеосигнал от бытовой видеоаппаратуры, либо RGB-сигнал видеоадаптера ПК. VR-шлемы с визорами, способными обеспечить разрешение не хуже 640 х 480, обычно рассчитаны на подключение непосредственно к видеоадаптеру ПК.
Помимо визора VR-шлем оборудован высококачественной стереофонической аудиосистемой. Источником звука может быть либо телевизор (видеомагнитофон), либо звуковая карта компьютера.
3D-очки являются наиболее распространенными и доступными по цене устройствами формирования трехмерных изображений. Принцип их действия основан на использовании затворного метода разделения элементов стереопары. ЗD-очки используются в качестве дополнения к обычному монитору и могут подсоединяться к видеоадаптеру ПК при помощи гибкого провода длиной 2-3 м.
Принцип действия ЗD-очков заключается в том, что при последовательном отображении на мониторе левой и правой частей стереопары синхронно меняется прозрачность стекол очков. В результате каждый глаз видит только свою часть стереопары, что обеспечивает стереоэффект. Чтобы стекла ЗD-очков могли «терять прозрачность» по командам компьютера, их выполняют по технологии ЖК-ячейки просветного типа, использующей эффект поляризации. Поэтому 3D-очков иногда называют поляризационными. Поскольку прозрачность стекол 3D-очков изменяется синхронно со сменой изображения на экране вследствие управления сигналами видеоадаптера, их называют активными.
Таким образом, термины «активные поляризационные очки», «3D-очки» — синонимы; они обозначают устройства, работающие на одинаковом принципе.
Между ЗD-очками и шлемами виртуальной реальности есть принципиальные различия:
3D-очки изображения не создают, хотя также содержат ЖК-линзы, которые используются в качестве электронно-управляемого фильтра (затвора), поэтому качество формируемого изображения определяется монитором;
3D-очки лишены системы виртуальной ориентации, поэтому изображение на экране монитора никак не корректируется в зависимости от положения головы наблюдателя. В связи с этим при использовании ЗD-очков нет смысла перекрывать зону периферийного зрения, поэтому они выполняются в форме обычных очков. Подключение 3D-очков к ПК производится в большинстве случаев с помощью дополнительного устройства — контроллера, который формирует синхросигнал для 3D-очков, управляющий поочередным затемнением стекол, и преобразует (при необходимости) выходной видеосигнал и синхросигналы видеоадаптера таким образом, чтобы обеспечить раздельный последовательный показ элементов стереопары на экране монитора.
В большинстве моделей 3D-очков контроллер выполняется в виде отдельного внешнего блока, хотя в настоящее время появилось много видеоадаптеров с интегрированными контроллерами для 3D-очков.
Современный рынок 3D-очков достаточно разнообразен. Преимущественно используются беспроводные модели, обеспечивающие связь с ПК с помощью инфракрасного передатчика, аналогичного телевизионному пульту управления.
ЗD-мониторы
Одним из направлений получения стереоскопического изображения является использование ЗD-мониторов. Существуют устройства двух типов, которые можно отнести к категории 3D-мониторов:
· плоскопанельные ЗD-мониторы на основе ЖК-экранов;
· мониторы на основе ЭЛТ, оборудованные поляризационным ЖК-фильтром.
Плоскопанельные ЗD-мониторы основаны на свойстве избирательности ЖК-мониторов по отношению к поляризации проходящего излучения. Стереопара в таких мониторах создается за счет того, что ЖК-ячейки нечетных строк экрана пропускают свет с одной поляризацией, например, с горизонтальной, а ячейки четных строк — с вертикальной. Нечетные строки растра используются для отображения левой части стереопары, а четные — правой. Наблюдение стереоэффекта производится с помощью пассивных поляризационных очков. Примером устройства, основанного на этом свойстве, служит ЗD-экран ПК типа Notebook Cyberbook.
Для работы с плоскопанельными мониторами другого типа 3D-очки не требуются. Принцип действия этого монитора основан на использовании двух разработок фирмы Sony: так называемого двойного расщепителя изображения и специальной фотодиодной системы слежения за положением головы пользователя. Расщепитель изображения состоит из двух прозрачных пластин, между которыми размещен ЖК-экран. Благодаря этому изображение на ЖК-экране может быть видно только под определенным углом. На экране одновременно отображаются оба элемента стереопары, причем пластины преломляют свет таким образом, что каждый глаз видит только один из элементов стереопары. Чтобы исключить нарушение стереоэффекта, который зависит от угла зрения, при изменении положения головы пользователя, применяется специальная система слежения за положением, в которой в качестве датчиков используется линейка фотодиодов, расположенная над основным экраном. Эта система формирует электрический сигнал, связанный с изменением угла зрения пользователя, под действием которого изменяется коэффициент преломления панелей, обеспечивая устойчивый стереоэффект. Такой принцип действия заложен в основу 15-дюймового ЗD-экрана ЖК-монитора фирмы Sony. Оптимальное расстояние до экрана составляет около 60 см, а максимальное разрешение — 1024x768.
Мониторы с поляризационным фильтром обеспечивают формирование трехмерного изображения с помощью обычного монитора на основе ЭЛТ, оборудованного специальным внешним электронно-управляемым поляризационным фильтром, например, Monitor Zscreen 2000 производства фирмы StereoGraphics. Этот фильтр используется вместе с пассивными поляризационными очками. Фильтром управляют сигналы специального контроллера, подключаемого к выходу видеоадаптера, подобно контроллеру ЗD-очков. Однако, в отличие от активных очков, у фильтра изменяется не прозрачность, а направление поляризации проходящей через него световой волны.
Контроллер управляет фильтром таким образом, что нечетные кадры оказываются поляризованными в одном направлении, а четные — в другом. В свою очередь, одно стекло пассивных очков пропускает свет с одним направлением поляризации, а другое —с другим. В результате один глаз видит только одну часть стереопары, а второй — только вторую.
Таким образом, в фильтре реализован такой же, как и в активных ЗD-очках, затворный метод разделения элементов стереопары. Достоинством данного устройства, по сравнению с активными ЗD-очками, является возможность использования легких и удобных пассивных очков.
ЗD-проекторы предназначены для коллективного просмотра объемных изображений в больших аудиториях. Главными отличиями ЗD-проекторов от мультимедийных являются сложная конструкция оптической системы и наличие специальных поляризационных фильтров (встроенных или внешних), при помощи которых производится селекция элементов стереопары.
Для реализации последовательного метода показа элементов стереопары частота кадров проектора должна быть в два раза выше обычной. Мультимедийные проекторы на основе ЖК-матриц не удовлетворяют этому требованию из-за инерционности молекул ЖК-вещества. Поэтому в качестве источника изображения в ЗD-проекторах применяется электронно-лучевая трубка, экран которой покрыт люминофором, дающим высокую яркость свечения и малое время послесвечения. Высокая яркость изображения, формируемого ЗD-проектором на проекционном экране, обеспечивается использованием трех монохромных ЭЛТ для каждого из основных цветов (R, G, В). На каждой ЭЛТ закреплен индивидуальный объектив. Проектор оснащен сложной электронной системой регистрации. Система автоматически определяет расстояние от проектора до экрана и на основе полученных данных с высокой точностью совмещает три монохромных изображения, проецируемых тремя объективами. ЭЛТ и объектив представляют собой единый конструктивный узел.
Люминофор экрана светится очень ярко, поэтому для предотвращения перегрева экран ЭЛТ охлаждают с помощью специальной жидкости, находящейся между экраном ЭЛТ и линзой объектива. Специальные регулировочные винты служат для ручной юстировки объектива. Примером такого устройства является проектор BARCOGRAPHICS 1209s фирмы BARCO. Проектор способен отображать видеосигнал от различных источников: от видеомагнитофона формата VHS до профессиональных графических стан ций, работающих с разрешением 2500x2000. Высокое разрешение проецируемого изображения связано с отсутствием зернистости люминофора, поскольку в монохромных ЭЛТ, которыми оснащен проектор, используется сплошное люминофорное покрытие. Для создания стереоэффекта при проецировании изображения необходимо обеспечить раздельное наблюдение элементов стереопары левым и правым глазом. Для этого используются один или два проектора и поляризационные очки (активные или пассивные) для каждого зрителя. В зависимости от используемой комбинации такого оборудования различают четыре схемы получения стереоскопической проекции.
Активная схема предполагает использование одного проектора на основе ЭЛТ, выполняющего последовательный показ элементов стереопары, в то время как зрители пользуются беспроводными активными поляризационными очками затворного типа. Пассивная схема строится с помощью одного проектора на основе ЭЛТ с внешним электронно-управляемым поляризационным затвором, последовательно показывающим элементы стереопары с различной поляризацией. Зрители используют пассивные поляризационные очки.
Пассивная схема 2 предполагает использование двух проекторов на основе ЭЛТ, выполняющих одновременный показ элементов стереопары. Каждый проектор оборудован внешним пассивным поляризатором, обеспечивающим различную поляризацию элементов стереопары, а зрители пользуются пассивными очками.
Пассивная схема 3 основана на использовании двух ЖК-проекторов, обеспечивающих одновременный показ элементов стереопары. Зрители пользуются пассивными очками.
Вопросы для самоконтроля:
1. Устройства формирования объемных изображений: назначение, принцип действия стереоскопа, способы селекции;
2. VR-шлемы;
3. 3D- очки;
4. 3D мониторы;
5. 3D- проекторы.
Тема 5.5 Видеоадаптеры
Студент должен:
иметь представление:
· об устройствах отображения информации
знать:
· типы видеоадаптеров;
· основные характеристики видеоадаптеров
Видеоадаптеры: назначение, функции и типы. Режимы работы и характеристики видеоадаптеров, их основные компоненты и характеристики. Выбор видеоадаптера.
Методические указания
Видеоадаптер (видеокарта) является компонентом видеосистемы ПК, выполняющим преобразование цифрового сигнала, циркулирующего внутри ПК, в аналоговые электрические сигналы, подаваемые на монитор. По существу, видеоадаптер выполняет роль интерфейса между компьютером и устройством отображения информации (монитором).
По мере развития ПК видеоадаптеры стали реализовывать аппаратное ускорение 2D- и ЗD-графики, обработку видеосигналов, прием телевизионных сигналов и многое другое. Современный видеоадаптер, называемый Super VGA (Super Video Graphics Adapter), или SVGA, представляет собой универсальное графическое устройство.
Видеоадаптер определяет следующие характеристики видеосистемы:
· максимальное разрешение и максимальное количество отображаемых оттенков цветов;
· скорости обработки и передачи видеоинформации, определяющие производительность видеосистемы и ПК в целом.
Кроме того, в функцию видеоадаптера включается формирование сигналов горизонтальной и вертикальной синхронизации, используемых при формировании растра на экране монитора.
Принцип действия видеоадаптера состоит в следующем.
Процессор формирует цифровое изображение в виде матрицы NxM n-разрядных чисел и записывает его в видеопамять. Участок видеопамяти, отведенный для хранения цифрового образа текущего изображения (кадра), называется кадровым буфером, или фрейм-буфером.
Видеоадаптер последовательно считывает (сканирует) содержимое ячеек кадрового буфера и формирует на выходе видеосигнал, уровень которого в каждый момент времени пропорционален значению, хранящемуся в отдельной ячейке. Сканирование видеопамяти осуществляется синхронно с перемещением электронного луча по экрану ЭЛТ. В результате яркость каждого пиксела на экране монитора пропорциональна содержимому соответствующей ячейки памяти видеоадаптера.
По окончании просмотра ячеек, соответствующих одной строке растра, видеоадаптер формирует импульсы строчной синхронизации, инициирующие обратный ход луча по горизонтали, а по окончании сканирования кадрового буфера формирует сигнал, вызывающий движение луча снизу вверх. Таким образом, частоты строчной и кадровой развертки монитора определяются скоростью сканирования содержимого видеопамяти, т.е. видеоадаптером.
Режимы работы видеоадаптера, или видеорежимы, представляют собой совокупность параметров, обеспечиваемых видеоадаптером: разрешение, цветовая палитра, частоты строчной и кадровой развертки, способ адресации участков экрана и др.
Все видеорежимы делятся на графические и текстовые. Причем в различных режимах видеоадаптера используются разные механизмы формирования видеосигнала, а монитор в обоих режимах работает одинаково.
Графический режим является основным режимом работы видеосистемы современного ПК, например под управлением Windows. В графическом режиме на экран монитора можно вывести текст, рисунок, фотографию, анимацию или видеосюжет. В графическом режиме в каждой ячейке кадрового буфера (матрицы NxM n-разрядных чисел) содержится код цвета соответствующего пиксела экрана. Разрешение экрана при этом также равно NxM. Адресуемым элементом экрана является минимальный элемент изображения — пиксел. По этой причине графический режим называют также режимом АРА (All Point Addressable — все точки адресуемы). Иногда число п называют глубиной цвета. При этом количество одновременно отображаемых цветов равно 2", а размер кадрового буфера, необходимый для хранения цветного изображения с разрешением NxМ и глубиной цвета п, составляет N*M бит.
В текстовом (символьном) режиме, как и в графическом, изображение на экране монитора представляет собой множество пикселов и характеризуется разрешением NхМ.
Изображение символа в пределах каждого знакоместа задается точечной матрицей (Dot Matrix). Размер матрицы зависит от типа видеоадаптера и текущего видеорежима. Чем больше точек используется для отображения символа, тем выше качество изображения и лучше читается текст. Точки матрицы, формирующие изображение символа, называются передним планом, остальные — задним планом, или фоном. На рис. 4.13 показана символьная матрица 8x8 пикселов. Допустив, что темной клетке соответствует логическая единица, а светлой — логический ноль, каждую строку символьной матрицы представим в виде двоичного числа. Следовательно, графическое изображение символа можно хранить в виде набора двоичных чисел. Для этой цели используется специальное ПЗУ, размещенное на плате ви- деоадаптера. Такое ПЗУ называют аппаратным знакогенератором.
Совокупность изображений 256 символов называется шрифтом. Аппаратный знакогенератор хранит шрифт, который автоматически используется видеоадаптером сразу же после включения компьютера (обычно это буквы английского алфавита и набор специальных символов). Адресом ячейки знакогенератора является порядковый номер символа.
Главная особенность текстового режима в том, что адресуемым элементом экрана является не пиксел, а знакоместо. Иными словами, в текстовом режиме нельзя сформировать произвольное изображение в любом месте экрана — можно лишь отобразить символы из заданного набора, причем только в отведенных символьных позициях.
Другим существенным ограничением текстового режима является узкая цветовая палитра — в данном режиме может быть отображено не более 16 цветов.
Таким образом, в текстовом режиме предоставляется значительно меньше возможностей для отображения информации, чем в графическом. Однако важное преимущество текстового режима — значительно меньшие затраты ресурсов ПК на его реализацию.
Источником видеосигнала чаще всего является аналоговое устройство — телевизионный тюнер, видеомагнитофон, видеокамера. Для передачи на компьютер цифрового видео (например, сигнала цифровых видеокамер) используется специальный цифровой порт Fire Wire. Однако цифровые видеокамеры пока не получили широкого распространения. Поэтому для компьютерной обработки сигналов аналоговых видеоустройств необходимо выполнить их оцифровку, т. е. преобразование из аналоговой в цифровую форму. Для этого нужны карты ввода/вывода, принимающие входящий аналоговый видеосигнал и оцифровывающие его в реальном времени, затем эти данные необходимо сохранить на жестком диске. После сохранения оцифрованного изображения выполняют его редактирование. Эти функции осуществляет устройство захвата видеосигнала.
Устройство захвата видеосигнала — видеобластер (VideoBlaster) Представляет собой видеоплату, называемую также захватчикомизображений, устройством ввода видео, ТВ-граббером (Grab ~~ захватывать), имидж-кепчерами (Image Capture — захват изображения), и обеспечивает:
1. прием низкочастотного видеосигнала (от видеокамеры, магнитофона или телевизионного тюнера) на один из программно-выбираемых видеовходов;
2. отображение принимаемого видео в реальном времени в масштабируемом окне среды Windows (VGA-монитор можно использовать вместо телевизора);
3. замораживание кадра оцифрованного видео;
4. сохранение захваченного кадра на винчестере или другом доступном устройстве хранения информации в виде файла в одном из принятых графических стандартов (TIP, TGA, PCX, GIF и др.).
Видеодекодер обеспечивает прием сигнала с одного из входов, его оцифровку, цифровое декодирование согласно телевизионному стандарту и передачу полученных YUV-данных видеоконтроллеру.
Видеоконтроллер выполняет организацию потоков оцифрованных данных между элементами видеоплаты, осуществляет необходимые цифровые преобразования данных (например, YUV в RGB, масштабирование), организует их хранение в буфере собственной памяти, пересылку данных по шине компьютера при сохранении на винчестере, а также их передачу цифроаналогово-му преобразователю.
Цифроаналоговый преобразователь совместно с видеоконтроллером участвует в формировании «живого» ТВ-окна на экране монитора, выполняет обратное аналоговое преобразование цифрового захваченного изображения, осуществляет передачу сигнала от видеоадаптера либо RGB-сигнала из буфера памяти на монитор.
Рисунок 9 - Обобщенная структурная схема видеобластера
При выборе карты видеобластера необходимо принимать во внимание его основные показатели:
разрешение кадров в сохраняемом видеопотоке;
возможность и типы аппаратной компрессии (сжатия) видеоинформации в режиме реального времени;
возможность одновременного ввода видео- и звуковой информации.
Наиболее распространены следующие карты видеобластера:
· массовые карты начального уровня;
· полупрофессиональные;
· профессиональные карты начального уровня;
· профессиональные.
Массовые карты начального уровня способны захватывать и сохранять на жестком диске видеопоток с разрешением кадра, не превышающим 352 х 288 точек, хотя для сохранения отдельных кадров возможно вдвое большее разрешение. Аппаратная компрессия видеоизображения отсутствует, поэтому при работе с такими картами необходимо использовать специальную программу — кодер, позволяющую в реальном времени сжимать видеопоток по алгоритму MPEG-1 или MPEG-2. Звуковой вход в устройствах этого класса отсутствует, что требует отдельной записи звука через вход звуковой карты.
Полупрофессиональные карты обеспечивают разрешение в 768 х 575 точек, соответствующее стандарту для видео в формате PAL; поддерживают самый простой тип аппаратной компрессии видео M-JPEG, позволяющий уменьшить объем, занимаемый оцифрованным фильмом, в 100 раз. Однако звукового входа эти карты не имеют.
Профессиональные карты начального уровня имеют аудиовход, что позволяет одновременно записывать на жесткий диск видео-и звуковое сопровождение; обеспечивают аппаратную компрессию по типу M-JPEG и могут быть использованы не только для ввода, но и для вывода отредактированного видеофильма с ПК на видеомагнитофон. Последнее позволяет хранить фильмы на обычной видеокассете при использовании компьютера как монтажного стола.
Профессиональные карты имеют возможность аппаратного сжатия по алгоритму MPEG-1 или MPEG-2 с уменьшением объема оцифрованного фильма в 200 раз.
Для работы с видео рекомендуется оснастить компьютер SCSI-винчестером с объемом памяти не менее 20 Гбайт.
После редактирования и монтажа видеофильм можно вновь переписать на аналоговую видеокассету, воспользовавшись видео-входом той же карты, либо подвергнуть еще более жесткому сжатию по алгоритму MPEG-4 для последующей записи на CD-R.
Вопросы для самоконтроля:
1. Видеоадаптеры: назначение, функции и типы;
2. Режимы работы и характеристики видеоадаптеров, их основные компоненты и характеристики;
3. Выбор видеоадаптера;
4. Устройство захвата видеосигнала — видеобластер.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|