Сделай Сам Свою Работу на 5

Постэмбриональный гемопоэз

Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови, который компенсирует физиологическое разрушение дифференцированных клеток. Он подразделяется на миелопоэз и лимфопоэз.

Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются эритроциты, гранулоциты, моноциты, тромбоциты, а также предшественники лимфоцитов. В миелоидной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимфоузлы и некоторые другие органы.

Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфоузлах. Она выполняет функции образования T- и B-лимфоцитов и иммуноцитов (например, плазмоцитов).

Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две основные клеточные линии — клетки ретикулярной ткани и гемопоэтические клетки.

Ретикулярные, а также жировые, тучные и остеогенные клетки вместе с межклеточным веществом формируют микроокружение для гемопоэтических элементов. Структуры микроокружения и гемопоэтические клетки функционируют в неразрывной связи друг с другом. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов).

Таким образом, для миелоидной и всех разновидностей лимфоидной ткани характерно наличие стромальных и гемопоэтических элементов, образующих единое функциональное целое.

СКК относятся к самоподдерживающейся популяции клеток. Они редко делятся. Выявление СКК стало возможным при применении метода образования клеточных колоний – потомков одной стволовой клетки.

Пролиферативную активность СКК регулируют колониестимулирующие факторы(КСФ), различные виды интерлейкинов (ИЛ-3 и др.). Каждая СКК в эксперименте или лабораторном исследовании образует одну колонию и называется колониеобразующей единицей (сокращенно КОЕ, CFU).



Исследование клеточного состава колоний позволило выявить две линии их дифференцировки. Одна линия дает начало мультипотентной клетке — родоначальнице гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза (сокращенно КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке — родоначальнице лимфопоэза (КОЕ-Л).

Из мультипотентных клеток дифференцируются олигопотентные (КОЕ-ГМ) и унипотентные родоначальные клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофильных гранулоцитов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегакариоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники. В лимфопоэтическом ряду выделяют унипотентные клетки — предшественницы для B-лимфоцитов и для T-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Все приведенные выше стадии развития клеток составляют четыре основных класса, или компартмента, гемопоэза:

· I класс — СКК - стволовые клетки крови (плюрипотентные, полипотентные);

· II класс — КОЕ-ГЭММ и КОЕ-Л - коммитированные мультипотентные клетки (миелопоэза или лимфопоэза);

· III класс — КОЕ-М, КОЕ-Б и т.д. - коммитированные олигопотентные и унипотентные клетки;

· IV класс — клетки-предшественники (бласты, напр.: эритробласт, мегакариобласт и т.д.).

Сразу отметим, что оставшиеся два класса гемопоэза составляют созревающие клетки (V класс) и зрелые клетки крови (VI класс).

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эритробластических островков. Эритробластический островок состоит из макрофага, окруженного одним или несколькими кольцами эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом. КОЕ-Э и образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами.

У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения эритробластов. Но всякий раз, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние — из стволовых клеток.

В норме из костного мозга в кровь поступают только эритроциты и ретикулоциты.

 

15. Красный костный мозг. Строение и гистофизиология миелоидной ткани. Эритроцитопоэз. Основные стадии развития и дифференцировки эритроцитов.

Костный мозг (medulla osseum, bone marrow) — центральный кроветворный орган, в котором находится самоподдерживающаяся популяция стволовых кроветворных клеток (СКК) и образуются клетки как миелоидного, так и лимфоидного ряда.

Развитие

Костный мозг у человека появляется впервые на 2-м месяце внутриутробного периода в ключицеэмбриона, затем на 3-4 -м месяце он образуется в развивающихся плоских костях, а также в трубчатых костях конечностей — лопатках, тазовых костях, затылочной кости, ребрах, грудине, костях основания черепа и позвонках, а в начале 4-го месяца развивается также в трубчатых костях конечностей. До 11-й недели это остеобластический костный мозг, который выполняет остеогеннуюфункцию. В данный период костный мозг накапливает стволовые клетки, а клетки стромы с остеогенными потенциями создают микросреду, необходимую для дифференцировки стволовых кроветворных клеток. У 12—14-недельного эмбриона человека происходят развитие и дифференцировка вокруг кровеносных сосудов гемопоэтических клеток. У 20—28-недельного плода человека в связи с интенсивным разрастанием костного мозга отмечается усиленная резорбция костных перекладин остеокластами, в результате чего образуется костномозговой канал, а красный костный мозг получает возможность расти в направлении эпифизов. К этому времени костный мозг начинает функционировать как основной кроветворный орган, причем большая часть образующихся в нем клеток относится к эритроидному ряду гемопоэза.

У зародыша 36 нед развития в костном мозге диафиза трубчатых костей обнаруживаются жировые клетки. Одновременно появляются очаги кроветворения в эпифизах.

Строение

Во взрослом организме человека различают красный и желтый костный мозг.

Красный костный мозг

Красный костный мозг (medulla ossium rubra) является кроветворной частью костного мозга. Он заполняет губчатое вещество плоских и трубчатых костей и во взрослом организме составляет в среднем около 4 – 5% общей массы тела. Красный костный мозг имеет темно-красный цвет и полужидкую консистенцию, что позволяет легко приготовить из него тонкие мазки на стекле. Он содержит стволовые кроветворные клетки (СКК) и диффероны гемопоэтических клеток эритроидного, гранулоцитарного и мегакариоцитарного ряда, а также предшественники В- и Т-лимфоцитов. Стромой костного мозга является ретикулярная соединительная ткань, образующая микроокружение для кроветворных клеток. В настоящее время к элементам микроокружения относят также остеогенные, жировые, адвентициальные, эндотелиальные клетки и макрофаги.

Ретикулярные клетки благодаря своей отростчатой форме выполняют механическую функцию, секретируют компоненты основного вещества — преколлаген, гликозаминогликаны, проэластин и микрофибриллярный белок и участвуют в создании кроветворного микроокружения, специфического для определенных направлений развивающихся гемопоэтических клеток, выделяя ростовые факторы.

Остеогенными клетками называют стволовые клетки опорных тканей, остеобласты и их предшественники. Остеогенные клетки входят в состав эндоста и могут быть в костномозговых полостях. Остеогенные клетки также способны вырабатывать ростовые факторы, индуцировать родоначальные гемопоэтические клетки в местах своего расположения к пролиферации и дифференцировке. Наиболее интенсивно кроветворение происходит вблизи эндоста, где концентрация стволовых клеток примерно в 3 раза больше, чем в центре костномозговой полости.

Адипоциты (жировые клетки) являются постоянными элементами костного мозга.

Адвентициальные клетки сопровождают кровеносные сосуды и покрывают более 50% наружной поверхности синусоидных капилляров. Под влиянием гемопоэтинов (эритропоэтин) и других факторов они способны сокращаться, что способствует миграции клеток в кровоток.

Эндотелиальные клетки сосудов костного мозга принимают участие в организации стромы и процессов кроветворения, синтезируют коллаген IV типа, гемопоэтины. Эндотелиоциты, образующие стенки синусоидных капилляров, непосредственно контактируют с гемопоэтическими и стромальными клетками благодаря прерывистойбазальной мембране. Эндотелиоциты способны к сократительным движениям, которые способствуют выталкиванию клеток крови в синусоидные капилляры. После прохождения клеток в кровоток поры в эндотелии закрываются. Эндотелиоциты выделяют колониестимулирующие факторы (КСФ) и белок фибронектин, обеспечивающий прилипание клеток друг к другу и субстрату.

Макрофаги в костном мозге представлены неоднородными по структуре и функциональным свойствам клетками, но всегда богатыми лизосомами и фагосомами. Некоторые из популяций макрофагов секретируют ряд биологически активных веществ (эритропоэтин, колониестимулирующие факторы, интерлейкины, простагландины, интерферон и др.). Макрофаги при помощи своих отростков, проникающих через стенки синусов, улавливают из кровотока железосодержащее соединение (трансферрин) и далее передают его развивающимся эритроидным клеткам для построения геминовой части гемоглобина.

Межклеточное вещество - В костном мозге это вещество содержит коллаген II, III и IV типа, гликопротеины, протеогликаны и др.

Гемопоэтические клетки или кроветворные диффероны составляют паренхимукрасного костного мозга.

Рассмотрим подребнее образование эритроцитов, гранулоцитов и тромбоцитов в красном костном мозге.

Эритроцитопоэз

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эритробластических островков.
Эритробластический островок состоит из макрофага, окруженного эритроидными клетками. Эритроидные клетки развиваются из колониеобразующей эритроидной клетки (КОЕ-Э), вступившей в контакт с макрофагом костного мозга. КОЕэ и образующиеся из нее клетки — от проэритробласта до ретикулоцита — удерживаются в контакте с макрофагом его рецепторами — сиалоадгезинами.

Макрофаги служат своего рода «кормильцами» для эритробластов, способствуют накоплению в непосредственной близости от эритробластов и поступлению в них эритропоэтина, витаминов кроветворения (витамина D3), молекул ферритина. Макрофаги островков фагоцитируют ядра, вытолкнутые эритробластами при их созревании и способны повторно присоединять КОЕэ и формировать вокруг себя новый очаг эритропоэза.

По мере созревания эритробласты отделяются от островков и после удаления ядра (энуклеации) проникают через стенку венозных синусов в кровоток. Стенки синусов состоят из эндотелиальных уплощенных клеток, пронизанных щелевидными отверстиями, или порами, в которые проникают форменные элементы крови и плазма. Среди эндотелиальных клеток есть фиксированные макрофаги.

16. Гранулоцитопоэз. Основные стадии развития и дифференцировки гранулоцитов.

Гранулоцитопоэз

Гранулоцитопоэтические клетки также образуют островки, главным образом по периферии костномозговой полости. Незрелые клетки гранулоцитарных рядов окружены протеогликанами. В процессе созревания гранулоциты депонируются в красном костном мозге, где их насчитывается примерно в 3 раза больше, чем эритроцитов, и в 20 раз больше, чем гранулоцитов в периферической крови.

Гранулоциты образуются также в костном мозге, причем нейтрофилы, базофилы и моноциты происходят из одной (полипотентной) клетки — предшественницы нейтрофилов и базофилов, а эозинофилы — из другой (унипотентной) клетки — предшественницы эозинофилов. По мере дифференцировки гранулоцитов размеры клеток уменьшаются, изменяется форма ядра, в цитоплазме накапливаются гранулы. Процесс развития гранулоцитов морфологически различают 6 стадий: миелобласт, промиелоцит, миелоцит, метамиелоцит, палочкоядерный и сегментоядерный гранулоциты. Специфические для каждого вида гранулоцитов гранулы появляются на стадии миелоцитов. Клеточные деления прекращаются на стадии метамиелоцитов.

 

17. Тромбоцитопоэз. Процесс образования и созревания мегакариоцитов.

Тромбоциты формируются в цитоплазме мегакариоцитов, отшнуровываются в синусы костного мозга, откуда поступают в циркуляцию. В процессе осуществления своих функций тромбоциты гибнут.

Однако образование тромбоцитов имеет особенности, нехарактерные для других клеток. Из мегакариобласта образуется мегакариоцит, который является самой большой клеткой костного мозга. Мегакариоцит имеет огромную цитоплазму. В результате созревания в цитоплазме вырастают разделительные мембраны, то есть происходит разделение единой цитоплазмы на небольшие фрагменты. Данные небольшие фрагменты мегакариоцита «отшнуровываются», и это и есть самостоятельные тромбоциты.Из костного мозга тромбоциты выходят в кровоток, где живут 8 – 11 дней, после чего гибнут в селезенке, печени или легких.


18. Моноцитопоэз. Основные стадии развития и дифференцировки моноцитов.

Моноциты развиваются из общего предшественника гемацитобласта, из которого образуется промежуточная форма монобласт. Они входят в кровоток, с которым достигают тканей, где они проходят через капилляры и становятся свободными макрофагами (гистиоцитами) или фиксированными макрофагами (фагоцитирующими ретикулярными клетками), которые обычно находятся в лимфоузлах, селезенке, костном мозгу, печени и передней доле гипофиза. Как указывалось выше, зрелые макрофаги могут делиться, и поэтому их пролиферация, по всей видимости, происходит вне костного мозга.

19.Тимфоциты: субпопуляции. Характеристика рецепторов, участие в иммунных реакциях , антигеннезависимая и антигензависимая пролиферация и дифференцировка.

T-лимфоциты, или Т-клетки (t — лат. thymus — тимус) — лимфоциты, развивающиеся у млекопитающих в тимусе[1] из предшественников — претимоцитов, поступающих в него из красного костного мозга. В тимусе T-лимфоциты дифференцируются, приобретая Т-клеточные рецепторы (TCR) и различные ко-рецепторы (поверхностные маркеры). Играют важную роль вприобретённом иммунном ответе. Обеспечивают распознавание и уничтожение клеток, несущих чужеродные антигены, усиливают действие моноцитов, NK-клеток, а также принимают участие в переключении изотипов иммуноглобулинов.

В отличие от миелопоэза, лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. В Т- и в В-лимфоцитопоэзе выделяют три этапа:

  • костномозговой этап;
  • этап антиген-независимой дифференцировки, осуществляемый в центральных иммунных органах;
  • этап антиген-зависимой дифференцировки, осуществляемый в периферических лимфоидных органах.

На первом этапе дифференцировки из стволовых клеток образуются клетки-предшественницы соответственно Т- и В-лимфоцитопоэза. На втором этапе образуются лимфоциты, способные только распознавать антигены. На третьем этапе из клеток второго этапа формируются эффекторные клетки, способные уничтожить и нейтрализовать антиген.

Процесс развития Т- и В-лимфоцитов имеет как общие закономерности, так и существенные особенности и потому подлежит отдельному рассмотрению.

Первый этап Т-лимфоцитопоэза осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:

1 класс - стволовые клетки;
2 класс - полустволовые клетки-предшественницы лимфоцитопоэза;
3 класс - унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза, эти клетки мигрируют в кровеносное русло и с кровью достигают тимуса.

Второй этап - этап антиген-независимой дифференцировки осуществляется в корковом веществе тимуса. Здесь продолжается дальнейший процесс Т-лимфоцитопоэза. Под влиянием биологически активного вещества тимозина, выделяемого стромальными клетками, унипотентные клетки превращаются в Т-лимфобласты - 4 класс, затем в Т-пролимфоциты - 5 класс, а последние в Т-лимфоциты - 6 класс. В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов:

  • киллеры;
  • хелперы;
  • супрессоры.

В корковом веществе тимуса все перечисленные субпопуляции Т-лимфоцитов приобретают разные рецепторы к разнообразным антигенным веществам (механизм образования Т-рецепторов остается пока невыясненным), однако сами антигены в тимус не попадают. Защита Т-лимфоцитопоэза от чужеродных антигенных веществ достигается двумя механизмами:

  • наличием в тимусе особого гемато-тимусного барьера;
  • отсутствием лимфатических сосудов в тимусе.

В результате второго этапа образуются рецепторные (афферентные или Т0) Т-лимфоциты - киллеры, хелперы, супрессоры. При этом лимфоциты в каждой из субпопуляций отличаются между собой разными рецепторами, однако имеются и клоны клеток, имеющие одинаковые рецепторы. В тимусе образуются Т-лимфоциты, имеющие рецепторы и к собственным антигенам, однако такие клетки здесь же разрушаются макрофагами. Образованные в корковом веществе Т-рецепторные лимфоциты (киллеры, хелперы и супрессоры), не заходя в мозговое вещество, проникают в сосудистое русло и током крови заносятся в периферические лимфоидные органы.

Третий этап - этап антиген-зависимой дифференцировки осуществляется в Т-зонах периферических лимфоидных органов - лимфоузлов, селезенки и других, где создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену. Однако в большинстве случаев антиген действует на лимфоцит не непосредственно, а опосредованно - через макрофаг, то есть вначале макрофаг фагоцитирует антиген, частично расщепляет его внутриклеточно, а затем активные химические группировки антигена - антигенные детерминанты выносятся на поверхность цитолеммы, способствуя их концентрации и активации. Только затем эти детерминанты макрофагами передаются на соответствующие рецепторы разных субпопуляций лимфоцитов. Под влиянием соответствующего антигена Т-лимфоцит активизируется, изменяет свою морфологию и превращается в Т-лимфобласт, вернее в Т-иммунобласт, так как это уже не клетка 4 класса (образующаяся в тимусе), а клетка возникшая из лимфоцита под влиянием антигена.

Процесс превращения Т-лимфоцита в Т-иммунобласт носит название реакции бласттрансформации. После этого Т-иммунобласт, возникший из Т-рецепторного киллера, хелпера или супрессора, пролиферирует и образует клон клеток. Т-киллерный иммунобласт дает клон клеток, среди которых имеются:

  • Т-памяти (киллеры);
  • Т-киллеры или цитотоксические лимфоциты, которые являются эффекторными клетками, обеспечивающими клеточный иммунитет, то есть защиту организма от чужеродных и генетически измененных собственных клеток.

После первой встречи чужеродной клетки с рецепторным Т-лимфоцитом развивается первичный иммунный ответ - бласттрансформация, пролиферация, образование Т-киллеров и уничтожение ими чужеродной клетки. Т-клетки памяти при повторной встрече с тем же антигеном обеспечивают по тому же механизму вторичный иммунный ответ, который протекает быстрее и сильнее первичного.

Т-хелперный иммунобласт дает клон клеток, среди которых различают Т-памяти, Т-хелперы, секретирующие медиатор - лимфокин, стимулирующий гуморальный иммунитет - индуктор иммунопоэза. Аналогичен механизм образования Т-супрессоров, лимфокин которых угнетает гуморальный ответ.

Таким образом, в итоге третьего этапа Т-лимфоцитопоэза образуются эффекторные клетки клеточного иммунитета (Т-киллеры), регуляторные клетки гуморального иммунитета (Т-хелперы и Т-супрессоры), а также Т-памяти всех популяций Т-лимфоцитов, которые при повторной встрече с этим же антигеном снова обеспечат иммунную защиту организма в виде вторичного иммунного ответа. В обеспечении клеточного иммунитета рассматривают два механизма уничтожения киллерами антигенных клеток:

  • контактное взаимодействие - "поцелуй смерти", с разрушением участка цитолеммы клетки-мишени;
  • дистантное взаимодействие - посредством выделения цитотоксических факторов, действующих на клетку-мишень постепенно и длительно.

20. Механизм активации Т-лимфоцитов. Контакт Т-лимфоцита-киллера с антигеном. Механизм взаимодействия естественного киллера с клеткой-мишенью.

Т-лимфоциты, успешно прошедшие позитивную и негативную селекцию в тимусе, попавшие на периферию организма, но не имевшие контакта с антигеном называются наивными Т-клетками (англ. Naive T cells). Основной функцией наивных Т клеток является реакция на патогены, прежде не известные иммунной системе организма. После того как наивные Т клетки распознают антиген, они становятся активированными. Активированные клетки начинают активно делиться образуя множество клонов. Некоторые из этих клонов превращаются в эффекторные Т- клетки, которые выполняют функции специфичные для данного типа лимфоцита (например выделяют цитокины в случае Т-хелперов или же лизируют пораженные клетки в случае Т-киллеров). Другая половина активированных клеток трансформируется в Т-клетки памяти. Клетки памяти сохраняются в неактивной форме после первичного контакта с антигеном до тех пор, пока не наступает повторное взаимодействие с тем же антигеном. Таким образом, Т-клетки памяти хранят информацию о ранее действовавших антигенах и формируют вторичный иммунный ответ, осуществляющийся в более короткие сроки, чем первичный.

Взаимодействия Т-клеточного рецептора и корецепторов (СD4, CD8) с главным комплексом гистосовместимости важно для успешной активации наивных Т-клеток, однако само по себе не достаточно для дифференциации в эффекторные клетки. Для последующей пролиферации активированных клеток необходимо взаимодействие т.н. костимулирующих молекул. Для Т-хелперов такими молекулами являются CD28 рецептор на поверхности Т-клетки и иммуноглобулин B7 на поверхности антигенпрезентирующей клетки.

Т-киллеры, цитотоксические T-лимфоциты, CTL (от англ. killer — убийца) — Т-лимфоциты, главной функцией которых является уничтожение повреждённых клеток собственного организма. Мишени Т-киллеров — это клетки, поражённые внутриклеточными паразитами (к которым относятся вирусы и некоторые виды бактерий), опухолевые клетки. Т-киллеры являются главным компонентом антивирусного иммунитета. Основным признаком Т-киллеров служит наличие на поверхности клетки молекулыкорецептора CD8. Т-киллеры распознают антигены при взаимодействии их Т-клеточного рецептора с антигеном, связанным с молекулами главного комплекса гистосовместимости I класса (англ. Major Histocompatibility Complex I (MHC-I)).

Т-хелперы и Т-киллеры образуют группу эффекторных Т-лимфоцитов, непосредственно ответственных за иммунный ответ. В то же время существует другая группа клеток, регуляторные Т-лимфоциты, функция которых заключается в регулировании активности эффекторных Т-лимфоцитов. Модулируя силу и продолжительность иммунного ответа через регуляцию активности Т-эффекторных клеток, регуляторные Т-клетки поддерживают толерантность к собственным антигенам организма и предотвращают развитие аутоиммунных заболеваний. Существуют несколько механизмов супрессии: прямой, при непосредственном контакте между клетками, и дистантный, осуществляющийся на расстоянии — например, через растворимые цитокины.

Активированные Т-лимфоциты приобретают ряд изменений поверхностного фенотипа. На их мембранах повышается количество адгезионных молекул: LFA-1, LFA-2, LFA-3, ICAM-1, CD29, способствующих более эффективному взаимодействию с клетками-мишенями. При этом активированные Т-эффекторы утрачивают поверхностные L-селектины и хоминг-рецептор CD44, что снижает их способность к рециркуляции. Вместо этого они усиленно экспрессируют интегрин VLA-4(CD49d), позволяющий им прилипать к эндотелию сосудов с последующей миграцией в очаг инфекции или воспаления. Кроме того, на активированных Т-лимфо цитах экспрессируются новые маркеры: CD25 (IL-2R), CD40L, CD45RO вместо CD45RA, B, CD26 и антигены гистосовместимости MHC II класса

21. В-лимфоциты ( субпопуляции). Характеристика рецепторов, антигеннезависимая и антигензависимая пролиферация и дифференцировка.

B-лимфоци́ты (B-клетки, от bursa fabricii птиц, где впервые были обнаружены) — функциональный тип лимфоцитов, играющих важную роль в обеспечении гуморального иммунитета. При контакте с антигеном или стимуляции со стороны T-клеток некоторые B-лимфоциты трансформируются в плазматические клетки, способные к продукции антител. Другие активированные B-лимфоциты превращаются в B-клетки памяти. Помимо продукции антител, В-клетки выполняют множество других функций: выступают в качестве антигенпрезентирующих клеток, продуцируют цитокины и экзосомы[1].

У эмбрионов человека и других млекопитающих B-лимфоциты образуются в печени и костном мозге из стволовых клеток, а у взрослых млекопитающих — только в костном мозге. Дифференцировка В-лимфоцитов проходит в несколько этапов, каждый из которых характеризуется присутствием определённых белковых маркеров и степенью генетической перестройки генов иммуноглобулинов.

 

B-лимфоциты происходят от плюрипотентных гемопоэтических стволовых клеток, дающих также начало всем клеткам крови. Стволовые клетки находятся в определённоммикроокружении, которое обеспечивает их выживание, самообновление или, при необходимости, дифференцировку. Микроокружение определяет, по какому пути пойдёт развитие стволовой клетки (эритроидному, миелоидному или лимфоидному)[1].

Дифференцировка В-лимфоцитов условно делится на две стадии — антигеннезависимую (в которую происходит перестройка генов иммуноглобулинов и их экспрессия) и антигензависимую (при которой происходит активация, пролиферация и дифференцировка в плазматические клетки). Выделяют следующие промежуточные формы созревающих В-лимфоцитов:

· Ранние предшественники В-клеток — не синтезируют тяжёлых и лёгких цепей иммуноглобулинов, содержат зародышевые IgH и IgL гены, но содержат антигенный маркер, общий со зрелыми пре-В-клетками.

· Ранние про-В-клетки — D-J перестройки в IgН генах.

· Поздние про-В-клетки — V-DJ перестройки в IgН генах.

· Большие пре-В-клетки — IgН гены VDJ-перестроены; в цитоплазме имеются тяжёлые цепи класса μ, экспрессируется пре-В-клеточный рецептор.

· Малые пре-В-клетки — V-J перестройки в IgL генах; в цитоплазме имеются тяжёлые цепи класса μ.

· Малые незрелые В-клетки — IgL гены VJ-перестроены; синтезируют тяжёлые и лёгкие цепи; на мембране экспрессируются иммуноглобулины (В-клеточный рецептор).

· Зрелые В-клетки — начало синтеза IgD.

В-клетки поступают из костного мозга во вторичные лимфоидные органы (селезёнку и лимфатические узлы), где происходит их дальнейшее созревание, презентация антигена, пролиферация и дифференцировка в плазматические клетки и В-клетки памяти.

 

Выделяют две субпопуляции В-клеток: В-1 и B-2. Субпопуляцию В-2 составляют обычные В-лимфоциты, к которым относится всё сказанное выше. В-1 — это относительно небольшая группа В-клеток, обнаруживаемая у человека и мышей. Они могут составлять около 5% от общей популяции B-клеток. Такие клетки появляются в течение эмбрионального периода. На своей поверхности они экспрессируют IgM и небольшое количество (или вовсе не экспрессируют) IgD. Маркером этих клеток является CD5. Однако он не является обязательным компонентом клеточной поверхности. В эмбриональном периоде В1-клетки появляются из стволовых клеток костного мозга. В течение жизни пул B-1-лимфоцитов поддерживается за счёт активности специализированных клеток–предшественников и не пополняется за счёт клеток, происходящих из костного мозга. Клетка–предшественница отселяется из кроветворной ткани на свою анатомическую нишу — в брюшную и плевральную полости — ещё в эмбриональном периоде. Итак, место обитания B-1-лимфоцитов — прибарьерные полости.

B-1-лимфоциты значительно отличаются от B-2-лимфоцитов по антигенной специфичности продуцируемых антител. Антитела, синтезированные B-1-лимфоцитами, не имеют значительного разнообразия вариабельных участков молекул иммуноглобулинов, но, напротив, ограничены в репертуаре распознаваемых антигенов, и эти антигены — наиболее распространённые соединения клеточных стенок бактерий. Все B-1-лимфоциты — как бы один не слишком специализированный, но определённо ориентированный (антибактериальный) клон. Антитела, продуцируемые B-1-лимфоцитами, почти исключительно IgM, переключение классов иммуноглобулинов в B-1-лимфоцитах не «предусмотрено». Таким образом, B-1-лимфоциты — «отряд» противобактериальных «пограничников» в прибарьерных полостях, предназначенных для быстрой реакции на «просачивающиеся» через барьеры инфекционные микроорганизмы из числа широко распространённых. В сыворотке крови здорового человека преобладающая часть иммуноглобулинов — продукт синтеза как раз B-1-лимфоцитов, т.е. это относительно полиспецифичные иммуноглобулины антибактериального назначения.

 

22.Понятие об иммунитете. Растворимые и нерастворимые антигены. Гуморальный и клеточный иммунитет. Классификация иммунокомпетентных клеток. Роль и функции АПК (захват, процессинг и представление антигенов).

Иммунитет (лат. immunitas — освобождение, избавление от чего-либо) — невосприимчивость, сопротивляемость организма к инфекциям и инвазиям чужеродных организмов (в том числе — болезнетворных микроорганизмов), а также воздействию чужеродных веществ, обладающих антигенными свойствами. Иммунные реакции возникают и на собственные клетки организма, измененные в антигенном отношении[1].

Обеспечивает гомеостаз организма на клеточном и молекулярном уровне организации[1]. Реализуется иммунной системой.

Биологический смысл иммунитета — обеспечение генетической целостности организма на протяжении его индивидуальной жизни[2]. Развитие иммунной системы обусловило возможность существования сложно организованных многоклеточных организмов[3].

Антигенами (от греч. Anti – против, Genes – род) называют чужеродные для организма сложные органические вещества (белки, нуклеопротеиды, липиды, полисахариды и др.), которые при введении в организм вызывают в нем образование антител и изменение иммунологической реактивности.

Антигенами являются не только инфекционные агенты, продукты их жизнедеятельности, вакцины, но и просто чужеродные для данного организма вещества (яичный белок, сыворотка крови и т. д.). В функциональном отношении антигены обладают двумя свойствами: 1) антигенностью, т. е. способностью индуцировать антитела, и 2) возможностью вступать с последними в определенные специфические взаимодействия, что проявляется в виде реакций иммунитета.

Слабые антигены (пыльца, домашняя пыль, шерсть животных) чаще дают аллергическую реакцию первого первого типа (атопический тип). Корпускулярные и нерастворимые антигены (бактерии, споры грибов) приводят к аллергическим реакциям замедленного типа. Растворимые аллергены (сыворотки, гамма глобулины, продукты жизни бактерий) обычно вызывают аллергическую реакцию иммуннокомплексного типа (третий тип).

Иммуноциты или иммунокомпетентные клетки - это клетки, обеспечивающие защиту организма от всего генетически чу-жого: микроорганизмов, чужих или переродившихся своих клеток. К ним относят Т-и В - лимфоциты, макрофаги, тучные клетки, гранулоциты. Макрофаг, фагоцитировавший антиген, как правило, не унич-тожает его полностью, а перерабатывает и выделяет на свою поверхность. Одновременно он выделяет интерлейкин-1, которым активизирует лимфоциты и запускает иммунную реакцию. Кроме того, макрофаг секретирует бактерицидные вещества, интерферон; факторы, стимулирующие и подавляющие размножение лимфоцитов, фактор некроза опухолей и др. Интердигитирующие и дендритные клетки лимфоидных органов, М-клетки кишечника как разновидности макрофагов, выполняют антигенпредставляющие функции соответственно по отношению к Т- и В-лимфоцитам. Информацию Т-хелперам могут также передавать и В-лим-фоциты, и натуральные киллеры. Эффекторные клетки в клеточном иммунитете - Т-киллеры. Они распознают антиген при помощи своих рецепторов и прикрепляются к нему. У Т-лимфоцитов, кроме рецептора к антигену, имеется рецептор для эритроцитов (Е-рецептор), Fc-рецептор, связывающий иммунные комплексы и обеспечивающий кооперацию между Т- и В-лимфоцитами и др. В месте прикрепления к антигену киллер с помощью выделяемых веществ разрывает мембрану антигенносителя и вызывает осмотический лизис. Другой механизм уничтожения - на расстоянии, с помощью токсических веществ. Эффекторные клетки в гуморальном иммунитете - плазмоциты, которые образуются из В-лимфоцитов под влиянием стимуляции со стороны антигена и Т-хелпера. Об антигене В-лимфо-цит получает информацию от макрофага, а Т-хелпер стимулирует процесс дифференцировки с помощью медиатора интерлейкина-2.

Антигенпредставляющие клетки или антигенпрезентирующие клетки (АПК, англ. antigen-presenting cell, APC) — клетки, которые экспонируют чужеродный антиген в комплексе с молекулами главного комплекса гистосовместимости (англ. MHC) на своей поверхности. Т-лимфоциты могут распознавать такие комплексы при помощи Т-клеточных рецепторов (англ. TCR). Антигенпредставляющие клеткипроцессируют антиген и представляют его Т-клеткам. Выделяют два типа антигенпрезентирующих клеток: «профессиональные» и «непрофессиональные».

Т-клетки не способны распознавать и, соответственно, реагировать на «чистый» антиген. Только антиген, который был предварительно процессирован другими клетками и представлен ими в комплексе с молекулами главного комплекса гистосовместимости, становится «видимым» для Т-клеток.

«Профессиональные» антигенпредставляющие клетки очень эффективно захватывают антиген путём фагоцитоза или рецептор-опосредованного эндоцитоза и затем представляют фрагмент этого антигена на своей мембране в комплексе с молекулами главного комплекса гистосовместимости II класса. Т-клетки распознают этот комплекс на мембране и взаимодействуют с ним. После этого антигенпредставляющие клетки продуцируют дополнительные ко-стимуляторные молекулы, что приводит к активации Т-клетки. Экспрессия этих ко-стимуляторных молекул является характерной чертой «профессиональных» антигенпрезентирующих клеток.

Существует несколько основных типов «профессиональных» антигенпрезентирующих клеток:

· дендритные клетки, которые, вероятно, являются наиболее важными антигенпредставляющими клетками. Активированные дендритные клетки являются особенно эффективными активаторами Т-хелперов, потому что на их поверхности присутствуют ко-стимуляторные молекулы, такие как белок B7.



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.