Сделай Сам Свою Работу на 5

Семантический дифференциал.







Метод «семантического» дифференциала (СД) разработан Ч. Осгудом для измерения смысла понятий и слов и прежде всего для дифференциации эмоциональной стороны значения данного понятия11. В социологии и социальной

психологии метод СД чаще всего применяется при изучении эмо­циональных компонентов социальных установок.

Для определения отношения респондентов к сопоставляемым между собой объектам (словам) используется следующая процедура. Допустим, требуется измерить различие установок к числу детей в семье. Измерение производится по набору шкал, каждая из ко­торых представляет собой континуум, образованный парой антонимичных прилагательных. Континуум содержит семь градаций ин­тенсивности отношения. Например, по шкале «хорошее — плохое» оценка объекта устанавливается следующим образом: «очень хоро­шее» (+3), «хорошее» (+2), «немного хорошее» (+1) «ни хорошее, ни плохое» (0), «немного плохое» (—1), «плохое» (—2), «очень пло­хое» (—3), Каждый респондент выражает свое отношение к числу детей в семье по всему набору шкал, число которых зависит от лелей исследования и ограничивается объемом опросного листа. Критерием отбора шкал является частота употребления антонимов в языке и способность шкалы вызывать реакции по всему про­странству континуума при оценке самых различных слов.



После заполнения опросного листа оценки каждого из респондентов по каждой шкале суммируются, затем вычисляется- средняя арифметическая оценка объекта установки для группы в целом. Если полученные средние нанести на график, составленный из вычерченных в масштабе шкал измерения, и соединить таким образом найденные точки ломаной линией то можно получить профиль данного объекта. На рис. 13 наглядно представлены различия -репродуктивных установок при опросе группы из 107 человек12.

Различие в отношении к числу детей в семье графически выра­жается расстояниями между - средними оценками сопоставляемых объектов по каждой шкале. Однако это различие установок точнее может быть выражено посредством вычисления величины диффе­ренциала Д. Расчет осуществляется по формуле.



где Д — величина дифференциала, показывающая степень различия в отношении к объектам х и у по набору из л шкал; d — разность средних оценок объектов х и у по шкале i. Величина дифференциа­ла выражается положительным числом, и чем ближе оно к нулю, тем выше сходство в отношении к сопоставляемым объектам. Данные табл. 29 показывают различие установок к числу детей (расчет





произведен по 15 шкалам, 9 из которых представлены на рис. 13).

Сопоставление абсолютных значений дифференциалов позволяет сделать вывод о том, что различия репродуктивных установок весь­ма существенны и что установки объединяются в две самостоятель­ные группы: установки на малодетность (Д12) и установки на среднедетность (Д34)> так как величины Д12 и Д34 меньше величины Д23—соответственно 2,72—2,62—3,97.

Следует отметить, что Ч. Осгуд и его коллеги при разработке методики СД и ее применении в различных областях познания вы­явили общую меру, на основе которой выносятся человеческие оценки. Она состоит из трех критериев или факторов, которые в совокупности определяют эмоциональный аспект значения иссле­дуемого понятия.

Каждый из трех факторов, а именно оценки, силы и активности, представлен набором тесно связанных между собой шкал, отража­ющих отдельные аспекты человеческого восприятия показания ор­ганов чувств. Наиболее употребительными для фактора оценки являются: «хорошее - плохое», «светлое — темное», «чистое — грязное»; для факторов силы: «сильное — слабое», «тяжелое — лег­кое», «твердое — мягкое»; для фактора активности: «активное — пассивное», «быстрое — медленное», «теплое — холодное». Обычно, определяя набор шкал (эта задача является главной при использо­вании метода СД), исходят из специфики оцениваемых объектов и стремятся к тому, чтобы представить все три основных фактора (имеются также и другие факторы, но они встречаются редко, а их применение обусловлено специальными целями исследования).



Многие исследователи считают, что в принципе методика СД позволяет фиксировать только оценочную сторону отношения, и по­этому часто прибегают к вычислению дифференциала не по шкалам каждого из основных факторов в отдельности, а в целом по всему набору применяющихся шкал. Надо сказать, что рассмотрение на­званных факторов как трех координат измерения значения, как

трех осей «семантического» пространства встречается в основном в психолингвистике, а также при описании истории создания методи­ки СД и практически в социологии используется крайне редко. Метод СД достаточно сложен и трудоемок, тем не менее его применение оправдывается возможностями выявления различий в реакциях на вербальные объекты.

 

3.3.Надежность измерения социальных характеристик

Описанные выше способы построения шкал не дают полного представления о свойствах полученных оценок. Для этого необхо­димы дополнительные процедуры, результаты которых будем опи­сывать в терминах ошибок измерения. Назовем это проблемой на­дежности измерения. Рассмотрим ее решение на пути выявления правильности измерения, его устойчивости и обоснованности.

Компоненты надежного измерения. При изучении правильности -устанавливается общая приемлемость данного способа измерения. Непосредственно понятие правильности связано с возможностью учета в результате измерения различного рода систематических оши­бок. Систематические ошибки имеют некоторую стабильную приро­ду возникновения: либо они являются постоянными, либо меняются по определенному закону.

Устойчивость характеризует степень совпадения результатов измерения при повторных применениях измерительной процедуры и описывается величиной случайной ошибки. Наиболее сложный вопрос надежности измерения — его обоснованность. Обоснованность связана с доказательством того, что измерено вполне определенное заданное свойство объекта, а не некоторое другое, более или менее на него похожее.

При установлении надежности следует иметь в виду, что в процессе измерения участвуют три составляющие: объект измере­ния, измеряющие средства, с помощью которых производится ото­бражение свойств объекта на числовую систему, и субъект, произ­водящий измерение. Предпосылки надежного измерения кроются в каждой отдельной составляющей.

Прежде всего сам объект в отношении измеряемого свойства может обладать значительной степенью неопределенности. Так, за­частую у индивида нет четкой иерархии жизненных ценностей, а следовательно, нельзя получить и абсолютно точные данные, ха­рактеризующие важность для него тех или иных явлений.

Но может быть и так, что способ получения оценки не обеспе­чивает максимально точных значений измеряемого свойства. Напри­мер, у респондента существует определенная иерархия ценностей, а для получения информации используется номинальная оценка с вариациями ответов от «очень важно» до «совсем неважно». Как правило, из приведенного набора все ценности помечаются ответами «очень важно», «важно», хотя реально у респондента имеется боль­шее число уровней значимости.

Наконец, при наличии высокой точности первых двух составляющих измерения субъект, производящий измерение, допускает грубые ошибки. Например, в процессе клинического интервью, в хо­де которого должна быть выявлена система Ценностей опрашивае­мого, интервьюер не смог довести до респондента суть беседы, не смог добиться доброжелательного отношения к исследованию и пр.

Каждая составляющая процесса измерения может быть источ­ником ошибки, связанной либо с устойчивостью, либо с правильностью, либо с обоснованностью. Однако, как правило, исследова­тель не в состоянии разделить эти ошибки по источникам их про­исхождения и поэтому изучает ошибки устойчивости, правильности и обоснованности всего измерительного комплекса в совокупности. При этом правильность (как отсутствие систематических ошибок): и устойчивость информации —элементарные предпосылки надеж­ности. Наличие существенной ошибки в этом отношении уже сво­дит на нет проверку данных измерения на обоснованность.

В отличие от правильности и устойчивости, которые 'могут быть измерены достаточно строго и выражены в форме числового пока­зателя, критерии обоснованности определяются либо на основе логических рассуждений, либо на основе косвенных показателей. В смежных с социологией науках, например в психологии, проблема обоснованности теста решается путем сопоставления его результатов с результатами внешнего критерия — с известной груп­пой или с данными реального поведения. В социологии такой при­дем, как правило, не удается использовать, поэтому обычно применяется сравнение данных одной методики с данными других: методик или исследований, т. е. обоснованность устанавливается более косвенным путем. При этом, разумеется, не обязательно до­биваться полного соответствия результатов. Достаточным будет уста­новление общих тенденций, что зависит и от соотносительной зна­чимости самих критериев, и от их функции в общем замысле ис­следования.

Правильность измерения — выявление систематических ошибок. Прежде чем приступать к изучению таких компонентов надежно­сти, как устойчивость и обоснованность. Необходимо убедиться в правильности выбранного инструмента измерения (шкалы или, си­стемы шкал).

Возможно, что последующие этапы окажутся излишними, если в самом начале выяснится полная неспособность данного инстру­мента на требуемом уровне дифференцировать изучаемую совокуп­ность, или может оказаться, что систематически не используется какая-то часть шкалы или ее отдельная градация. Прежде всего нужно ликвидировать или уменьшить такого рода недостатки шкалы и только затем использовать ее в исследовании,

Отсутствие разброса, ответов по значениям шкалы. Попадание ответов в один, пункт свидетельствует о полной непригодности из­мерительного инструмента — шкалы. Такая ситуация может воз­никнуть или из-за «нормативного» давления в сторону общепринятого мнения; или из-за того, что градации(значения) шкалы по­имею? отношения к определению данного свойства рассматривае­мых объектов (нерелевантны).

Например, если все опрашиваемые респонденты согласны с ут­верждением «хорошо, когда работа или задание требуют универ­сальных знаний», нет ни одного ответа «не согласен», остается только зафиксировать этот факт, однако подобная шкала не по­может дифференцировать изучаемую совокупность по отношению респондентов» к работе.

Часто примером нерелевантности являются многие исходные шкалы методики семантического дифференциала Осгуда. Так, в ча­стности, при изучении установок инженера в работе измерения респондентов по шкалам «мужской — женский», «горячий — холод­ный» и др. давали оценку только в середине шкалы, в нейтральной точке, Уточнение позволило сделать вывод, что эти шкалы, по мнению респондентов, не, имеют отношения к изучаемым установкам.

Использование части шкалы. Довольно часто - обнаруживается, что практически работает лишь какая-то часть шкалы, какой-то один из его полюсов с прилегающей более или менее обшир­ной зоной.

Так, если респондентам для оценки предлагается шкала, имею­щая положительный и. отрицательный полюса, в частности от +3 до —3, то при оценивании какой-то заведомо положительной ситуа­ции респонденты не используют отрицательные оценки, а диффе­ренцируют свое мнение лишь с помощью положительных. Для того чтобы вычислить значение относительной ошибки измерения, ис­следователь должен знать определенно, какой же метрикой поль­зуется респондент — всеми семью градациями шкалы или только четырьмя положительными. Так, ошибка измерения в 1 балл мало о чем говорит, если мы не знаем, какова действительная вариациямнений.

Пример13. Девятнадцати испытуемым было предложено выска­зать отношение к трем понятиям по семи шкалам к каждому. Шкалы имели по 21 градации с крайними полюсами +10 и —10 и средней точкой 0. В целом получено 399 (19 • 3 • 7) оценок соследующим распределением:

Поскольку значения аi< 0 использовались всего лишь 11 раз: (3 + 3 + 5) из 399, т. е. в 2,8% случаев, то возникает вопрос, дей­ствует ли отрицательная часть этой шкалы. Возможно, что попа­дание в эту часть шкалы — явление чисто, случайное. Проверим предположение.

Будем считать, что если вероятность попадания в конец шкалы превышает 5% при достаточно малом уровне значимости (a == 0,05 или a=0,01), то наблюдаемые попадания ответов являются случайными и соответствующая часть шкалы «не работает». Для этого границы доверительного интервала, построенного по имею­щейся частоте для вероятности попадания в конец шкалы, сравним со значением 5 %. Если значение 5% оказывается выше границ этого интервала, то следует признать, что проверяемая часть шкалы «не работает».

Для расчета границ доверительного интервала воспользуемся формулами14

Здесь т — доля попаданий в проверяемую часть шкалы; га — объем выборочной совокупности данных; Z — коэффициент доверия, соответствующий 2a (о доверительном оценивании см. с. 211).

Для рассматриваемого примера т — 0,0276; п — 399; Za = l,96 для а = 0,05. Подставляя эти значения в формулы, получим pt= 0,016, pz = 0,049. То же самое в процентах: р1 = 1,6%; р2 = 4,9%.Поскольку значение 5% не принадлежит интервалу (1,6%; 4,9%),то считаем, что отрицательная часть шкалы (аi< 0) «не работает»,следовательно, 21-балльная оценка функционирует лишь в областиот +10 до 0.

Для вопросов, имеющих качественные градации ответов, можно применять подобное требование в отношении каждого пункта шка­лы: каждый из них должен набирать не менее 5% ответов, в про­тивном случае считаем этот пункт шкалы неработающим.

Требование 5%-го уровня наполнения в двух рассмотренных задачах не следует рассматривать как строго обязательное; в за­висимости от задач исследования могут быть выдвинуты большие или меньшие значения этих уровней.

Неравномерное использование отдельных пунктов шкалы. Слу­чается, особенно при использовании упорядоченных шкал, града­ции которых сопровождаются словесными описаниями, что некото­рое значение переменной (признака) систематически выпадает из поля зрения респондентов, хотя соседние градации, характеризующие более низкую и более высокую степень выраженности при­знака, имеют существенное наполнение.

Так, если конфигурация распределения ответов на вопрос с четырьмя упорядоченными градациями такая, как на рис. 14, то, видимо, шкала неудачно сформулирована. Значительное наполнение двух соседних пунктов (1 и о) свиде­тельствует о «захвате» части голосов из плохо, сформулированного пункта 2. Аналогичная картина наблюдается и в том случае, когда респонденту предлагают шкалу, имеющую слишком большую дробность: будучи не в, со­стоянии оперировать всеми градация­ми шкалы, респондент выбирает лишь несколько базовых. Например, зачастую десятибалльную шкалу респонденты расценивают как некоторую модифи­кацию пятибалльной, предполагая, что «десять» соответствует «пяти», «восемь» — «четырем», «пять» — «трем» и т. д. При этом базовые оценки используются значительно чаще, чем другие.

Для выявления указанных аномалий равномерного распределе­ния по шкале можно предложить следующее правило: для достаточ­но большой доверительной вероятности (1 — a>=0,99) и, следова­тельно, в достаточно широких границах наполнение каждого зна­чения не должно существенно отличаться от среднего из соседних наполнений.

Соответствующий статистический критерий таков:

Эта величина имеет хи-квадрат распределение с одной степенью свободы (df = 1).

Здесь i — номер значения признака, который подвергается ана­лизу; пiнаблюдаемая частота дли этого значения;

 

Пример.Рассмотрим случай измерения в десятибалльной шкале ряди ценностей типа «любимая работа», «материальный достаток», «здоровье» и т. д. При 45 испытуемых и 14 предложенных ценно­стях получены 623 оценки, распределение которых выглядит так.

Поскольку предполагается, что шкала должна «работать» равно­мерно, то, возможно, пункты шкалы 9, 7, 5 не удовлетворяют этому требованию.

Для оценки аi = 9 наблюдаемая частота n9= 67,Г ожидаемая —

 

Подставим данные значения в формулу c2 и получим расчетную величину c2 = 22,93. Поскольку c2 = 22,93>c2кр = 6,63 (a=0,01), то следует признать различие между наблюдаемой и ожидаемой частотами значимым. Следовательно, частота 67 для оцейки а = 9 «лишком Мала но сравнению с соседними.

Аналогичные расчеты проводятся для пунктов шкалы а = 7 и а=5; частота пункта 7 (n7= 60) не противоречит выдвинутому требованию равномерности; частота оценки 5 (n5 = 81) слишком велика по сравнению с соседними и, таким образом, противоречит | требованию равномерности. 1

Определение грубых ошибок. В процессе измерения иногда возникают грубые ошибки, причиной которых могут быть неправильные записи исходных данных, плохие расчеты, неквалифицированное использование измерительных средств и т. п. Это проявляется в том, что в рядах измерений попадаются данные, резко отличающиеся от совокупности всех остальных значений. Чтобы выяснить, нужно ли эти значения признать грубыми ошибками, устанавли­вают критическую границу так, чтобы вероятность превышения ее крайними значениями была достаточно малой и соответствовала некоторому уровню значимости а. Это правило основано на том, что появление в выборке чрезмерно больших значений хотя и возможно как следствие естественной вариабельности значений, но мало­вероятно.

Если окажется, что какие-то крайние значения совокупности принадлежат ей с очень малой вероятностью, то такие значения, признаются грубыми ошибками и исключаются из дальнейшего рас­смотрения. Выявление грубых ошибок особенно важно проводить для выборок малых, объемов: не будучи исключенными из анализа, они существенно искажают параметры выборки:

Статистический критерий t определения грубых ошибок таков , где t>tкр в качестве t выступает либо t max либо t min)15

 

 

Здесь xmin и xmax являются крайними членами некоторой совокуп­ности значений {х}.

В табл. XII, приводимой В. Ю. Урбахом16, даны критические значения t, соответствующие различным объемам выборки для до­верительных уровней: a= 0,05 и a= 0,01.

Например, при выборке в 50 единиц значение t для уровня a= 0,05 будет 3,16.

Если t расчетное окажется больше t критического, то соответствующее хсчитается маловероятным и отбрасывается как грубая ошибка.

Пример. Представим, что получены распределения по признакус такими выборочными параметрами: х=0,012; s = 0,160 (при объеме выборки n= 29 респондентов). В этом распределении край­ними значениями оказались такие: xmin= 0,50; xmax =0,250. Су­щественное подозрение вызывает значение, равное —0,500, посколь­ку среднее значение этого признака близко к 0 (0,012), а вариация его значений невелика (s = 0,160).

Так как для n=29 и a=0,05 tкр = 2,94,"то с вероятностью 0,95 можно признать, что значение признака х= — 0,500 слишком мало для данной совокупности, и поэтому является грубой ошибкой а х0,250 не относится к резко выделяющимся значениям.

Итак, дифференцирующая способность шкалы как первая существенная характеристика ее надежности предполагает: обеспече­ние достаточного разбора данных, выявление фактического использования респондентом предложенной протяженности шкалы; анализ отдельных «выпадающих» значений, исключение грубых ошибок. После того как установлена относительная приемлемость используемых шкал в указанных аспектах, следует переходить к выявлению устойчивости измерения по этой шкале.

Устойчивость измерения.

О высокой надежности шкалы можно говорить лишь в том случае, если повторные измерения при помощи одних и тех же объектов дают сходные результаты устойчивость проверяется на одной и той же выборке исследуемых объектов (респондентов). Сравнение же средних оценок разных выборок ничего не говорит об устойчивости измерения как таковом, а толь­ко лишь о репрезентативности выборок и их соответствий одной, и той же совокупности. Обычно устойчивость проверяй проведе­нием двух последовательных замеров с определенным временным интервалом — таким, чтобы этот промежуток не был слишком велик, чтобы сказалось изменение самого объекту но не слишком май, чтобы респондент мог по памяти «подтягивать» данные второго замера к предыдущему (т. е. его протяженность зависит от (объекта изучения и колеблется от двух до трех недель).

Осуществление более двух измерений связано с трудностями организации эксперимента и накапливанием ошибок другой при­роды, не связанной, с устойчивостью.

Пусть х — изучаемый на устойчивость признак, а отдельные его значения— х1, x2…хк. Каждый респондент l(l=1,…n) и при первом и при втором опросах получает некоторую оценку по изучаемому признаку — x1lи x2lсоответственно/

Результаты двух опросов в респондентов заносятся в таблицу сопряженности (табл. 30), которая служит основой для дальнейшего изучения вопросов устойчивости. Здесь nijчисло респондентов, выбравших в первом опросе ответ хi и заменивших его при втором опросе на ответ xj.

Существует традиция изучать устойчивость с помощью анализа корреляций между ответами проб I и II. Однако этот подход не­достаточно эффективен, поскольку не учитывает многих аспектов устойчивости.

 

Остановимся на более результативных показателях.

1. Показателем абсолютной устойчивости шкалы назовем вели­чину, показывающую долю совпадающих ответов в последователь­ных пробах.

Этот показатель использует не всю информацию, содержащуюся в соотношении ответов проб I и II, а базируется лишь на частотах совпадающих ответов. Однако он хорош, например, для характе­ристики устойчивости качественных признаков.

Для описания устойчивости количественных признаков его не­достаточно, поскольку при большом числе градаций доля совпада­ющих ответов будет чрезвычайно мала назначение W мало информативно. Здесь пригодны показатели неустойчивости, т. е. величи­ны ошибки, учитывающие не просто факт несовпадения ответов, а степень этого несовпадения. Ошибки рассчитываются по край­ней мере для порядковых признаков.

Линейной мерой несовпадения оценок, является средняя ариф­метическая ошибка, показывающая средний сдвиг в ответах в расчете на одну пару последовательных наблюдений:

 

Здесь х1и х11ответы по анализируемому вопросу L - го рес­пондента в I и II пробах соответственно.

Пример.Пусть ответы на вопрос в пятибальной шкале для выборки 50 человек распределились, как в табл. 31.

Таким образом, в I пробе оценку «1» дали 9 респондентов, из них только трое повторили ее в пробе II, пятеро отметили «2», один дал оценку «3» и т. д.

 

Данный показатель использует всю информацию, содержащуюся в распределении, хорошо интерпретируется как средний сдвиг в ответах одного респондента, однако имеет определенные ограниче­ния аналитического характера и поэтому обычно редко использу­ется в статистических расчетах.

Средняя квадратическая ошибка для последовательных дан­ных17 в расчете на одну пару наблюдений выглядит так:

 

 



(совпадение Sxи 1AI в этом примере чисто случайное).

До сих пор речь шла об абсолютный ошибках, размер которых выражался в тех же единицах, что и сама измеряемая величина, например 0,82 балла в пятибалльной шкале. Это не позволяет срав­нивать ошибки измерения разных признаков по разным шкалам. Следовательно, помимо абсолютных, нужны относительные показа­тели ошибок измерения.

В качестве показателя для нормирования абсолютной ошибки можно использовать максимально возможную ошибку в рассмат­риваемой шкале (Dmax).

Если число делений шкалы k, тогда Dmax равно разнице между крайними значениями шкалы (Xmax – Xmin), т. е. k—1, и относи­тельная ошибка имеет вид

 

(здесь |D|— средняя арифметическая ошибка измерения).

Однако зачастую этот показатель «плохо работает» из-за того, что шкала не используется на всей ее протяженности. Поэтому бо­лее показательными являются относительные ошибки, рассчитан­ные по фактически используемой части шкалы, как было рассмот­рено выше. Если число градаций в «работающей» части шкалы обозначить k', то тогда более надежной будет такая оценка ошибки:

 

Если в качестве абсолютной ошибки использовалась средняя квадратическая ошибка S, то показатель относительной ошибки



 

Пример.Допустим, что шкала имеет 7 градаций. При опреде­лении «работающей» части этой шкалы анализируется распреде­ление полученных в I пробе оценок:

 

Здесь на оценки «5», «6»-, «7» приходится лишь 11 наблюдений, т. е. 2,26%. Проверка согласно критерию (формула (1)) устанав­ливает, что эта часть шкалы «не работает»; т. е. используются лишь градации 1, 2, 3, 4, поэтому Dmaх = 4 — 1 = 3. На основании соотношения ответов в I и II пробах находим сдвиги в ответах (ошиб­ки). Распределение ошибок по этой шкале оказалось следующим:

 

измерения. Однако оценка по k также является довольно грубой и не использует всю информацию, содержащуюся в ответах I пробы ведь реально не все оценки могут дать максимальный сдвиг, а только крайние на шкале.

Оценим для приведенного распределения максимальный сдвиг по реально работающей части шкалы: только крайние значения (233, 78 + 11) могут дать сдвиг в 3 балла, 106 и 59 ответов могутдать максимальный сдвиг в 2 балла. Таким образом, возможный сдвиг для данного исходного распределения «может быть равен средней в 2,6 балла четырех балльной шкалы, т. е. фактическая ошибка еще больше: 0,6:2,6= 0,23.

Повышение устойчивости измерения. Для решения этой задачи необходимо выяснить различительные возможности пунктов: исполь­зуемой шкалы, что предполагает четкую фиксацию респондентами отдельных значений: каждая оценка должна быть строго отделена от соседней. На практике это означает, что в последовательных про­бах респонденты практически повторяют свои оценки. Следователь­но, высокой различимости делений шкалы должна соответствовать малая ошибка.

Эту жё задачу можно описать в терминах чувствительности шка­лы, которая характеризуется количеством делений, приходящихся на одну и ту же разность в значениях измеряемой величины, т. е. чем больше градаций в, шкале, тем/больше ее чувствительность. Однако чувствительность нельзя повышать простым увеличением дробности, ибо высокая чувствительность при низкой устойчивости является излишней (например, шкала в 100 баллов, а ошибка из­мерения ±10 баллов).

Во и при малом числе градаций, т. е. при низкой чувствитель­ности, может быть низкая устойчивость, и тогда следует увеличить дробность шкалы. Так бывает, когда респонденту навязывают кате­горические ответы «да», «нет», а он предпочел бы менее жесткие оценки. И потому он выбирает в повторных испытаниях иногда «да», иногда «нет» для характеристики своего нейтрального положения.

Итак, следует найти некоторое оптимальное соотношение меж­ду чувствительностью и устойчивостью. Введём правило: использовать столько градаций в шкале, чтобы ее ошибка была меньше 0,5 балла. - : " .

Если ошибка меньше 0,5 балла, то в последовательных опросах ответы в среднем будут совпадать. При |D| >0,5 балла ответы в последовательных опросах будут в среднем отличаться на 1 балл (и выше).

Существуют способы, «позволяющие добиться требуемой чувстви­тельности.

Пример.В исследовании каждый испытуемый дает 8 оценок некоторым профессиональным качествам инженеров. Значение оце­нок варьирует от +3 до —3. Проведено два измерения. Рассмотрим суммарное распределение оценок по четырем качествам (самостоя­тельность, творчество, инициативность, опытность), данных тринад­цати респондентов (табл. 32).



Всего в табл 32 представлено 416 пар наблюдений: 13 респон­дентов X 8 оценок X 4 качества. Из них в первой пробе 226 оценок имели значение «3»; во второй пробе из них только 170 были по­вторены, 47 оценок получили значение «2», 6 оценок — значение «1» и 3 оценки — значение «О».

 

Таким образом, для исходной оценки «3» средняя оценка во второй пробе стала равной

На основании этого соотношения оценок получим распределение ошибок:

Рассчитаем среднюю арифметическую ошибку çDç= 0,69. Поскольку çDç> 0,5, ищем не различающиеся градации.

Средние оценки по каждой строке сравниваем с помощью кри­терия Стьюдента. Если окажется, что х1и xi+1отличаются незначимо (t<tкрит), то далее нужно сравнивать xiи xi+1и т. д. до значимого отличия средних (tti, i+tзаписаны в последнем столбце табл. 32, а значимы» значения выделены).

Таким образом, оценки «3». и «2» отличаются между собой су­щественно, поскольку критерий Стьюдента фиксирует значимое различие между 2,70 и 2,47; оценки «2» и «1» несущественно отлича­ются друг от друга и т. д. Представим результаты сравнения ис­ходных оценок при помощи схемы разбиения совокупности оце­нок на классы эквивалентности:

Здесь все оценки попадают в три непересекающихся класса: оценка «3» отличается от «2»; «2» и «1» не отличаются друг от друга, но отличаются от соседних оценок; последние четыре значе­ния взаимно неразличимы.

Следовательно, респонденты различают лишь три уровня вме­сто семи предложенных, и шкала должна быть преобразована в трехбалльную, где высокой оценке соответствует исходная оценкав 3 балла, бредней — 2 и 1 балл; низкой — О, —1, —2, —3. При­своим описанным уровням новые баллы — соответственно 3, 2, 1.В итоге имеем следующее соотношение оценок (табл. 33).

Это распределение характеризуется ошибкой çDç=0,43 балла, т. е. уже меньше 0,5 градации, и потому такая шкала устойчива.

В общем случае возможны два варианта соотношения исходных оценок: 1) классы неразличимости оценок неё пересекаются (например, как это было в только что рассмотренном случае);

 

 

2) классы неразличимости оценок пересекаются например так:

 

 



 

 

В первом случае можно подобрать для шкалы числовую серию, т. е. упорядоченный ряд чисел, в котором большее число характе­ризует более высокий уровень качества.

Во втором случае имеется полуупорядоченная система оценок, и ее можно отобразить лишь на полуупорядоченную числовую си­стему. В рассматриваемом примере возможно, в частности, такое числовое представление:

Там, где между исходными оценками нет существенного раз­личия, разница между значениями числового представления (ниж­ний ряд чисел) меньше 1; при значимом различии разница боль­ше 1.

Однако часто желательно иметь преобразованные оценки, вы­раженные целыми числами. В таком случае можно предложить следующую систему понижения дробности шкалы: ближайшим исходным значениям, существенно отличающимся друг от друга, присваивают ранги последовательно I, II, III и, т. д. В рассматриваемом примере будет выглядеть так:



 

Для промежуточных значений, несущественно отличающихся от соседних (например, исходную оценку «2» можно отнести в любые классы — и в I, и во II), следует предложить дополнительные кри­терии отнесения их в один из двух соседних классов. Можно в качестве критерия использовать меру относительной близости про­межуточной оценки к тому или иному соседнему классу и путем перебора всех возможных схем объединения искать схему с наименьшей ошибкой.

В конечном итоге порядок действия может быть таким. На ос­нове данных двух последовательных проб определяем пороги различаемости градаций шкалы, В том случае, если обнаружено смешение градаций, применяют один из двух способов.

Первый способ, и итоговом варианте уменьшают дробность шкалы (например, из шкалы в 7 интервалов переходят на шкалу в 3 интервала).

Второй способ. Для предъявления респонденту сохраняют прежнюю дробность шкалы и только при обработке укрупняют соот­ветствующие ее пункты (как это было показано выше).

Второй способ кажется предпочтительнее, поскольку, как пра­вило, большая дробность шкал побуждает респондента и к более активной реакции. При обработке данных информацию следует перекодировать в соответствии с проведенным анализом различи­тельной способности исходной' шкалы.

Итак, предложенные способы анализа целесообразны при отра­ботке окончательного варианта методики. Анализ устойчивости отдельных вопросов шкалы позволяет; а) выявить плохо сформулиро­ванные вопросы, их неадекватное понимание разными респондентами; б) уточнить интерпретацию шкалы» предложенной для оценки того или иного явления, выявить более оптимальный вариант дроб­ности значения шкалы.

Изучение устойчивости окончательного варианта методики даст представление о надежности данных (связанной устойчивостью),которые будут получены в основном исследовании.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.