Сделай Сам Свою Работу на 5

Реализация объекта-функции





При реализации программы в разделе 12.2 нам уже приходилось определять ряд объектов-функций. В этом разделе мы изучим необходимые шаги и возможные вариации при определении класса объекта-функции. (В главе 13 определение класса рассматривается детально; в главе 15 обсуждается перегрузка операторов.)

В самой простой форме определение класса объекта-функции сводится к перегрузке оператора вызова. Вот, например, унарный объект-функция, определяющий, что некоторое значение меньше или равно 10:

// простейшая форма класса объекта-функции class less_equal_ten { public: bool operator() ( int val ) { return val <= 10; }

};

Теперь такой объект-функцию можно использовать точно так же, как предопределенный. Вызов алгоритма count_if() с помощью нашего объекта-функции выглядит следующим образом:

count_if( vec.begin(), vec.end(), less_equal_ten() );

Разумеется, возможности этого класса весьма ограничены. Попробуем применить отрицатель, чтобы подсчитать, сколько в контейнере элементов, больших 10:

count_if( vec.begin(), vec.end(),

not1(less_equal_then ()));

или обобщить реализацию, разрешив пользователю задавать значение, с которым надо сравнивать каждый элемент контейнера. Для этого достаточно ввести в класс член для хранения такого значения и реализовать конструктор, инициализирующий данный член указанной пользователем величиной:



class less_equal_value { public: less_equal_value( int val ) : _val( val ) {} bool operator() ( int val ) { return val <= _val; }   private: int _val;

};

Новый объект-функция применяется для задания произвольного целого значения. Например, при следующем вызове подсчитывается число элементов, меньших или равных 25:

count_if( vec.begin(), vec.end(), less_equal_value( 25 ));

Разрешается реализовать класс и без конструктора, если параметризовать его значением, с которым производится сравнение:

template < int _val > class less_equal_value { public: bool operator() ( int val ) { return val <= _val; }

};

Вот как надо было бы вызвать такой класс для подсчета числа элементов, меньших или равных 25:

count_if( vec.begin(), vec.end(), less_equal_value<25>());

(Другие примеры определения собственных объектов-функций можно найти в Приложении.)

Упражнение 12.4

Используя предопределенные объекты-функции и адаптеры, создайте объекты-функции для решения следующих задач:

(a) Найти все значения, большие или равные 1024.



(b) Найти все строки, не равные "pooh".

(c) Умножить все значения на 2.

Упражнение 12.5

Определите объект-функцию для возврата среднего из трех объектов. Определите функцию для выполнения той же операции. Приведите примеры использования каждого объекта непосредственно и путем передачи его функции. Покажите, в чем сходство и различие этих решений.

Еще раз об итераторах

Следующая реализация шаблона функции не компилируется. Можете ли вы сказать, почему?

// в таком виде это не компилируется template < typename type > int count( const vector< type > &vec, type value ) { int count = 0;   vector< type >::iterator iter = vec.begin(); while ( iter != vec.end() ) if ( *iter == value ) ++count;   return count;

}

Проблема в том, что у ссылки vec есть спецификатор const, а мы пытаемся связать с ней итератор без такого спецификатора. Если бы это было разрешено, то ничто не помешало бы нам модифицировать с помощью этого итератора элементы вектора. Для предотвращения подобной ситуации язык требует, чтобы итератор, связанный с const-вектором, был константным. Мы можем сделать это следующим образом:

// правильно: это компилируется без ошибок

vector< type>::const_iterator iter = vec.begin();

Требование, чтобы с const-контейнером был связан только константный итератор, аналогично требованию о том, чтобы const-массив адресовался только константным указателем. В обоих случаях это вызвано необходимостью гарантировать, что содержимое const-контейнера не будет изменено.

Операции begin() и end() перегружены и возвращают константный или неконстантный итератор в зависимости от наличия спецификатора const в объявлении контейнера. Если дана такая пара объявлений:



vector< int > vec0;

const vector< int > vec1;

то при обращениях к begin() и end() для vec0 будет возвращен неконстантный, а для vec1 – константный итератор:

vector< int >::iterator iter0 = vec0.begin();

vector< int >::const_iterator iter1 = vec1.begin();

Разумеется, присваивание константному итератору неконстантного разрешено всегда. Например:

// правильно: инициализация константного итератора неконстантным

vector< int >::const_iterator iter2 = vec0.begin();

Итераторы вставки

Вот еще один фрагмент программы, в котором есть тонкая, но серьезная ошибка. Видите ли вы, в чем она заключается?

int ia[] = { 0, 1, 1, 2, 3, 5, 5, 8 }; vector< int > ivec( ia, ia+8 ), vres; // ...   // поведение программы во время выполнения не определено

unique_copy( ivec.begin(), ivec.end(), vres.begin() );

Проблема вызвана тем, что алгоритм unique_copy() использует присваивание для копирования значения каждого элемента из вектора ivec, но эта операция завершится неудачно, поскольку в vres не выделено место для хранения девяти целых чисел.

Можно было бы написать две версии алгоритма unique_copy(): одна присваивает элементы, а вторая вставляет их. Эта последняя версия должна, в таком случае, поддерживать вставку в начало, в конец или в произвольное место контейнера.

Альтернативный подход, принятый в стандартной библиотеке, заключается в определении трех адаптеров, которые возвращают специальные итераторы вставки:

· back_inserter() вызывает определенную для контейнера операцию вставки push_back() вместо оператора присваивания. Аргументом back_inserter() является сам контейнер. Например, вызов unique_copy() можно исправить, написав:

// правильно: теперь unique_copy() вставляет элементы с помощью // vres.push_back()... unique_copy( ivec.begin(), ivec.end(),

back_inserter( vres ) );

· front_inserter() вызывает определенную для контейнера операцию вставки push_front() вместо оператора присваивания. Аргументом front_inserter() тоже является сам контейнер. Заметьте, однако, что класс vector не поддерживает push_front(), так что использовать такой адаптер для вектора нельзя:

// увы, ошибка: // класс vector не поддерживает операцию push_front() // следует использовать контейнеры deque или list unique_copy( ivec.begin(), ivec.end(),

front_inserter( vres ) );

· inserter() вызывает определенную для контейнера операцию вставки insert() вместо оператора присваивания. inserter() принимает два аргумента: сам контейнер и итератор, указывающий позицию, с которой должна начаться вставка:

unique_copy( ivec.begin(), ivec.end(),

inserter( vres ), vres.begin() );

· Итератор, указывающий на позицию начала вставки, сдвигается вперед после каждой вставки, так что элементы располагаются в нужном порядке, как если бы мы написали:

vector< int >::iterator iter = vres.begin(), iter2 = ivec.begin();   for ( ; iter2 != ivec.end() ++ iter, ++iter2 )

vres.insert( iter, *iter2 );

Обратные итераторы

Операции begin() и end() возвращают соответственно итераторы, указывающие на первый элемент и на элемент, расположенный за последним. Можно также вернуть обратный итератор, обходящий контейнер от последнего элемента к первому. Во всех контейнерах для поддержки такой возможности используются операции rbegin() и rend(). Есть константные и неконстантные версии обратных итераторов:

vector< int > vec0; const vector< int > vec1;   vector< int >::reverse_iterator r_iter0 = vec0.rbegin();

vector< int >::const_reverse_iterator r_iter1 = vec1.rbegin();

Обратный итератор применяется так же, как прямой. Разница состоит в реализации операторов перехода к следующему и предыдущему элементам. Для прямого итератора оператор ++ дает доступ к следующему элементу контейнера, тогда как для обратного – к предыдущему. Например, для обхода вектора в обратном направлении следует написать:

// обратный итератор обходит вектор от конца к началу vector< type >::reverse_iterator r_iter; for ( r_iter = vec0.rbegin(); // r_iter указывает на последний элемент r_iter != vec0.rend(); // пока не достигли элемента перед первым r_iter++ ) // переходим к предыдущему элементу

{ /* ... */ }

Инвертирование семантики операторов инкремента и декремента может внести путаницу, но зато позволяет программисту передавать алгоритму пару обратных итераторов вместо прямых. Так, для сортировки вектора в порядке убывания мы передаем алгоритму sort() пару обратных итераторов:

// сортирует вектор в порядке возрастания sort( vec0.begin(), vec0.end() );   // сортирует вектор в порядке убывания

sort( vec0.rbegin(), vec0.rend() );

Потоковые итераторы

Стандартная библиотека предоставляет средства для работы потоковых итераторов чтения и записи совместно со стандартными контейнерами и обобщенными алгоритмами. Класс istream_iterator поддерживает итераторные операции с классом istream или одним из производных от него, например ifstream для работы с потоком ввода из файла. Аналогично ostream_iterator поддерживает итераторные операции с классом ostream или одним из производных от него, например ofstream для работы с потоком вывода в файл. Для использования любого из этих итераторов следует включить заголовочный файл

#include <iterator>

В следующей программе мы пользуемся потоковым итератором чтения для получения из стандартного ввода последовательности целых чисел в вектор, а затем применяем потоковый итератор записи в качестве целевого в обобщенном алгоритме unique_copy():

#include <iostream> #include <iterator> #include <algorithm> #include <vector> #include <functional>   /* * вход: * 23 109 45 89 6 34 12 90 34 23 56 23 8 89 23 * * выход: * 109 90 89 56 45 34 23 12 8 6 */   int main() { istream_iterator< int > input( cin ); istream_iterator< int > end_of_stream;   vector<int> vec; copy ( input, end_of_stream, inserter( vec, vec.begin() ));   sort( vec.begin(), vec.end(), greater<int>() );   ostream_iterator< int > output( cout, " " ); unique_copy( vec.begin(), vec.end(), output );

}

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.