Сделай Сам Свою Работу на 5

Диффузионная металлизация





Диффузионной металлизацией называется процесс диффузионного насыщения поверхностных слоев стали различными металлами. Детали, поверхность которых насыщена алюминием, хромом, кремнием, бором, приобретают ряд ценных свойств, например жаростойкость, коррозионную стойкость, повышенную износостойкость и твердость.

При алитировании, т.е. насыщении алюминием, которое обычно проводится в порошкообразных смесях или расплавленном алюминии, детали приобретают повышенную коррозионную стойкость благодаря образованию плотной пленки Al2O3, предохраняющей металл от окисления. Толщина слоя составляет 0,2…0,5 мм.

Силицирование, т.е. насыщение кремнием, придает высокую кислотоупорность в соляной, серной и азотной кислотах, жаростойкость, износостойкость и применяется для деталей, используемых в химической и нефтяной промышленности, для вкладышей подшипников, роторов водяных насосов, трубопроводной арматуры, труб судовых механизмов. Толщина слоя в пределах 0,3…1,0 мм.

Хромирование - процесс насыщения поверхностного слоя стали хромом, при этом повышается коррозионная стойкость, твердость и износостойкость. Наибольшее применение получило хромирование в порошкообразных смесях феррохрома или хрома, хлористого аммония и оксида алюминия. Хромируют обычно низкоуглеродистые стали: структура слоя состоит из твердого раствора хрома в a-железе и содержит 30…40 % хрома. При хромировании средне- и высокоуглеродистой стали получаемый слой состоит из карбидов хрома (Cr, Fe)7C3 и др. Хромированию подвергают клапаны компрессоров, матрицы штампов для холодной высадки и др. При хромировании обеспечивается высокая твердость, износостойкость, стойкость против газовой коррозии до 800 °С, а также стойкость против коррозии в воде, морской воде и кислотах. Толщина слоя составляет до 0,2 мм.



Цинкование наиболее широко используют в технике. На долю цинковых покрытий приходится около 60 % от общей поверхности металлических покрытий. Цинковые покрытия хорошо защищают железо и его сплавы от коррозии на воздухе и в воде. Толщина цинкового покрытия 6…36 мкм зависит от условий эксплуатации изделий. Оцинкованные листы и полосы применяются в жилищном строительстве (кровля, водосточные трубы), для изготовления емкостей, в автомобильном и железнодорожном транспорте и др.



Термомеханическая обработка стали

Термомеханическая обработка ТМО - это совокупность операций пластической деформации и термической обработки, совмещенных в одном технологическом процессе, который включает нагрев, пластическое деформирование и охлаждение. Термомеханическое воздействие приводит к получению структурного состояния, которое обеспечивает повышение механических свойств.

Оптимальное сочетание пластической деформации и фазовых превращений приводит к повышению плотности и более правильному расположению несовершенств кристаллической решетки металла.

 
 

Различают два основных вида ТМО: высокотемпературную термомеханическую обработку (ВТМО) (рис. 16, а) и низкотемпературную термомеханическую обработку (НТМО) (рис. 16, б).

При ВТМО деформация производится при температуре выше температуры рекристаллизации (при этом сталь имеет аустенитную структуру). Степень деформации 20…30 %. Во избежание рекристаллизации вслед за деформацией незамедлительно производится закалка (1150 °С) с последующим низкотемпературным отпуском (100…200 °С).

НТМО применяется только для легированных сталей, обладающих значительной устойчивостью переохлажденного аустенита. При НТМО деформация производится ниже температуры рекристаллизации (400…600 °С), степень деформации 75…95 %. Закалку производят сразу после деформации, а затем следует низкотемпературный отпуск (100…200 °С).

Недостатком НТМО является, во-первых, необходимость использования мощного оборудования для деформирования, во-вторых, стали после НТМО имеют невысокую сопротивляемость хрупкому разрушению.



Если при обычной термической обработке сталь имеет временное сопротивление при растяжении 2000…2200 МПа, то после ТМО оно достигает 2200…3000 МПа, при этом пластичность увеличивается в два раза (удлинение с 3…4 % повышается до 6…8 %).

Получаемое в процессе горячей деформации упрочнение тут же полностью или частично снимается за счет рекристаллизации, что снижает сопротивление деформации и повышает пластичность металлов.

 

Влияние нагрева на структуру и свойства

Деформированного металла

Как уже отмечалось ранее на детали работающих машин воздействуют внешние силы или нагрузки Р, вызывающие в материале сначала упругие, а затем пластические деформации.

Деформацией называется изменение размеров или формы тела под действием внешних сил, либо физико-механических процессов, протекающих в самом теле (перепад температур, фазовые превращения и т.д.).

Любое воздействие внешних сил на твердое тело уравновешивается противодействием межатомных сил, которые стремятся вернуть атомы в положения, соответствующие минимуму потенциальной энергии.

Деформация тела совершается в результате относительного смещения атомов из положения равновесия. При упругой деформации сохраняется пропорциональная зависимость между деформирующими силами и смещениями атомов. После снятия внешних сил твердое тело восстанавливает свои исходные размеры и форму. Если при прекращении действия внешних сил твердое тело не полностью восстанавливается, то такая деформация называется пластической (остаточной). В этом случае атомы не возвращаются в исходные позиции, а занимают новые положения устойчивого равновесия. При пластическом нагружении линейная связь между напряжениями и деформациями обычно отсутствует. Способность металлов к остаточной деформации называется пластичностью.

Пластическая деформация твердых тел в основном характеризуется скольжением и двойникованием. Скольжение или смещение отдельных частей кристалла относительно друг друга (рис. 17, а) совершается под действием касательных напряжений (t). Оно осуществляется в плоскостях и направлениях с наиболее плотной упаковкой атомов, где сопротивление сдвигу наименьшее. Металла, имеющие большое количество таких плоскостей и направлений (с кубической кристаллической решеткой, например), являются наиболее пластичными. Кристаллическая решетка ГПУ обладает низкими пластическими свойствами.

 
 

При двойниковании (рис. 17, б) происходят смещения атомов, располагающихся в плоскостях, параллельных плоскости двойникования. Двойникование сопровождает скольжение, а плоскости двойникования совпадают с плоскостями скольжения.

Пластическая деформация представляется как процесс скольжения, основой которого являются перемещения в плоскости скольжения отдельных несовершенств кристаллической решетки - дислокаций, см. рис. 17.

Процесс пластической деформации металлов сопровождается ростом числа дефектов кристаллической решетки, искривлениями плоскостей скольжения, появлением обломков кристаллитов в плоскостях скольжения, структурными превращениями по плоскостям скольжения и др. Все это препятствует перемещению дислокаций, способствует их накапливанию и взаимодействию друг с другом. Это одна из причин упрочнения (наклепа) и снижения пластичности металла.

На рис. 18, а показана микроструктура металла до деформации.

При наклепе растут значения прочностных характеристик металлов и уменьшаются показатели пластичности.

При больших степенях деформации зерна металла вытягиваются в направлении действия приложенных сил. При этом образуется волокнистая или слоистая структура (рис. 18, б). Еще большая степень деформации приводит к возникновению текстуры деформации, которая характеризуется определенной ориентацией зерен по отношению к прилагаемым нагрузкам. Волокнистая структура и текстура деформации приводит к анизотропии. Металл, подвергнутый пластическому деформированию, находится в термодинамически неустойчивом состоянии. Нагрев может вернуть ему исходные (до деформирования) свойства. Если температура нагрева меньше 0,2…0,3 температуры плавления, то протекает процесс возврата. При этом улучшаются структурное состояние и пластичность металла, а также уменьшается плотность дислокаций.

Возврат имеет две стадии. При более низких температурах наблюдается отдых, когда уменьшается число точечных дефектов. Второй стадией при несколько больших температурах является дробление кристаллов. Возврат почти не изменяет механические свойства металлов.

При температуре нагрева около 0,4 температуры плавления в металле происходит процесс рекристаллизации, при котором почти полностью снимается наклеп или нагартовка. Вследствие тепловой активности атомов образуются новые равноосные зерна. Зародыши зерен возникают в участках с повышенной плотностью дислокаций, постепенно они увеличиваются в размере за счет перехода к ним атомов от деформированных участков металла. Новые зерна имеют неискаженную кристаллическую решетку. Поэтому после рекристаллизации свойства металла возвращаются к исходным. При рекристаллизации существенно снижаются прочностные характеристики, пластичность возрастает, снимаются внутренние напряжения.

Сравнивая температуры деформации и рекристаллизации, можно говорить о горячей или холодной деформации.

Если температура деформации ниже температуры рекристаллизации, то деформация считается холодной. Процесс холодной деформации сопровождается наклепом металла, так как малые температуры не обеспечивают разупрочнения металлов. Механические свойства металлов при холодной деформации изменяются значительно: возрастает прочность и уменьшается пластичность.

Если температура деформации выше температуры рекристаллизации, то деформацию называют горячей, при которой получаемый наклеп снимается рекристаллизацией.

 

Чугуны

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.