Сделай Сам Свою Работу на 5

Математическое описание функциональных элементов

 

Математическое описание каждого функционального элемента следует проводить в отдельном подразделе с указанием заголовка, например:

1.1 Электронный усилитель

1.2 Генератор постоянного тока

и т.д.

Для каждого функционального элемента привести его принципиальную схему, дать краткое описание принципа действия (например, пояснить каким образом достигается усиление сигнала по мощности в генераторе и ЭМУ). С описанием функциональных элементов можно ознакомиться в [1-5].

При выводе уравнений функциональных элементов с учетом принятых допущений нет необходимости проводить линеаризацию уравнений и записывать уравнения в малых отклонениях от номинального режима. Здесь уравнения функциональных элементов линейные и изменение их координат могут быть большими.

При записи уравнений и передаточных функций рекомендуется использовать следующий способ обозначений: например, – коэффициент усиления электронного усилителя, – передаточная функция электронного усилителя; , где – передаточная функция, связывающая выход с входом и т.п. (другие обозначения см. ниже).

Допускается сквозная нумерация формул или нумерация формул в пределах одного раздела (например, (2.4) и т.п.).

Определение параметров электрических машин проводится по паспортным данным таблицы 1, которые соответствуют номинальным режимам при источнике питания бесконечной мощности (с нулевым внутренним сопротивлением). При этом коэффициенты передачи определяются из уравнений статики. С помощью найденных паспортных значений коэффициентов передачи определяются коэффициенты передачи и постоянные времени передаточных функций для соединенных блоков функциональных элементов ("электронный усилитель-ЭМУ" в схемах А, Б, В; "электронный усилитель-генератор" в схемах Г, Д; "генератор-двигатель" в схемах А, Б, Г, Д) с учетом внутренних сопротивлений источников напряжения.

Ниже приводятся примеры определения параметров передаточных функций для функциональных элементов. Расчеты проводятся в системе единиц СИ.



 

Генератор постоянного тока

 

1. Уравнения статики для номинального режима генератора имеют вид

 

,

,

,

 

где и – номинальные напряжение и ток в обмотке возбуждения генератора, – номинальное значение э.д.с.; и – номинальные напряжение и ток в якорной обмотке генератора, – сопротивление управляющей обмотки возбуждения генератора; – сопротивление якорной обмотки генератора; – коэффициент усиления по току, зависящий от угловой скорости вращения якоря вспомогательного двигателя. В генераторах, предназначенных для усиления напряжения по мощности, .

Отсюда следует, что

,

 

и с учетом паспортных значений найдем коэффициент усиления генератора

 

.

 

Например, для генератора №1 получим

.

2. Уравнения динамики генератора в схеме соединения имеют вид

 

,

,

 

где , , – сопротивление якоря ЭМУ – для схем А, Б, В; , , – выходное сопротивление электронного усилителя – для схем Г, Д.

Отсюда с учетом преобразования Лапласа при нулевых начальных условиях получим с передаточной функцией

 

,

где , .

Например, коэффициент усиления генератора для схем Г, Д имеет значение

 

,

 

т.е. меньше паспортного значения.

3. Для генератора с нагрузкой в схеме В напряжение на нагрузке определяется по формуле

 

,

 

где ; – проводимость нагрузки. Отсюда следует, что напряжение является нелинейной функцией от величин , . Учитывая, что при наличии нагрузки Ом величина , с помощью разложения в ряд Тейлора можно записать

 

.

 

В установившемся номинальном режиме при отсутствии нагрузки ( ) справедливо уравнение

 

.

Учитывая малость величины , отклонения , вызванные подключением нагрузки , также будут малыми. Тогда при отбрасывании слагаемого второго порядка малости будет справедливо уравнение

.

 

Фрагмент структурной схемы генератора с нагрузкой представлен на рис. 10.

 
 

Тахогенератор

 

1. Тахогенератор постоянного тока предназначен для измерения угловой скорости вращения якоря. Уравнения статики для номинального режима следуют из уравнений статики генератора без учета малого сопротивления :

 

,

,

 

где – номинальные обороты якоря; .

Отсюда следует, что

,

где

.

 

Например, для тахогенератора №1 получим

 

Вс/рад.

 

2. Уравнения динамики тахогенератора имеют вид

 

.

 

Тогда передаточная функция тахогенератора для схем А,Б имеет вид

 

.

 

Для схем Г, Д выходом тахогенератора является угловое перемещение . В этом случае с учетом равенства получим

 

.

 



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.