Сделай Сам Свою Работу на 5

Алгоритмов работы с величинами





 

Изучаемые вопросы:

ª ЭВМ — исполнитель алгоритмов.

ª Понятие «величина», характеристики величин.

ª Действия, выполняемые над величинами.

Есть две стороны в обучении алгоритмизации:

— обучение структурной методике .построения алгоритмов;

— обучение методам работы с величинами.

Решение первой задачи обсуждалось выше. Знакомясь с программным управлением исполнителями, работающими «в обстановке», ученики осваивали методику структурного программирования. При этом понятие «величина» могло быть не затронуто вовсе. Однако с величинами ученики уже встречались в других темах базового курса: в частности, при изучении баз данных, электронных таблиц. Теперь требуется объединить навыки структурной алгоритмизации и навыки работы с величинами.

ЭВМ — исполнитель алгоритмов.Обсуждение методических вопросов изучения темы «Алгоритмы работы с величинами» будем проводить в программистском аспекте. Составление любой программы для ЭВМ начинается с построения алгоритма. Как известно, всякий алгоритм (программа) составляется для конкретного исполнителя, в рамках его системы команд. О каком же исполнителе идет речь в теме «программирование для ЭВМ»? Ответ очевиден: исполнителем является компьютер. Точнее говоря, исполнителем является комплекс «ЭВМ + система программирования (СП)». Программист составляет программу на том языке, на который ориентирована СП. Иногда в литературе по программированию такой комплекс называют «виртуальной ЭВМ». Например, компьютер с работающей системой программирования на Бейсике называют «Бейсик-машина»; компьютер с работающей системой программирования на Паскале называют «Паскаль-машина» и т.п. Схематически это изображено на рис. 11.5.



Рис. 11.5. Взаимодействие программиста с компьютером

Входным языком такого исполнителя является язык программирования Паскаль.

При изучении элементов программирования в базовом курсе необходимо продолжать ту же структурную линию, которая была заложена в алгоритмическом разделе. Поэтому при выборе языка программирования следует отдавать предпочтение языкам структурного программирования. Наиболее подходящим из них для обучения является Паскаль.



Процесс программирования делится на три этапа:

1) составление алгоритма решения задачи;

2) составление программы на языке программирования;

3) отладка и тестирование программы.

Для описания алгоритмов работы с величинами следует, как и раньше, использовать блок-схемы и учебный алгоритмический язык. Описание алгоритмов должно быть ориентировано на исполнителя со структурным входным языком, независимо от того, какой язык программирования будет использоваться на следующем этапе,

Характеристики величин.Теперь обсудим специфику понятия величины и методические проблемы раскрытия этого понятия.

Компьютер работает с информацией. Информация, обрабатываемая компьютерной программой, называется данными. Величина это отдельный информационный объект, отдельная единица данных. Команды в компьютерной программе определяют действия, выполняемые над величинами. По отношению к программе данные делятся на исходные, результаты (окончательные данные) и промежуточные данные, которые получаются в процессе вычислений (рис. 11.6).

Рис. 11.6. Уровни данных относительно программы

 

Например, при решении квадратного уравнения: ах2 + bх + с = = 0, исходными данными являются коэффициенты а, b, с; результатами — корни уравнения: х1, х2; промежуточным данным — дискриминант уравнения: D = b2 — 4ас.

Важнейшим понятием, которое должны усвоить ученики, является следующее: всякая величина занимает свое определенное место в памяти ЭВМ — ячейку памяти. В результате в сознании учеников должен закрепиться образ ячейки памяти, сохраняющей величину. Термин «ячейка памяти» рекомендуется употреблять и в дальнейшем для обозначения места хранения величины.



У всякой величины имеются три основных характеристики: имя, значение и тип. На уровне машинных команд всякая величина идентифицируется адресом ячейки памяти, в которой она хранится, а ее значение — двоичный код в этой ячейке. В алгоритмах и языках программирования величины делятся на константы и переменные.

Константа — неизменная величина и в алгоритме она представляется собственным значением, например: 15, 34.7, 'к', true и пр. Переменные величины могут изменять свои значения в ходе выполнения программы и представляются символическими именами — идентификаторами, например: X, S2, cod!5 и пр. Однако ученики должны знать, что и константа, и переменная занимают ячейку памяти, а значение этих величин определяется двоичным кодом в этой ячейке.

Теперь о типах величин — типа^данных. С понятием типа данных ученики уже могли встречаться, изучая базы данных и электронные таблицы. Это понятие является фундаментальным для программирования. Поэтому в данном разделе базового курса происходит возврат к знакомому разговору о типах, но на новом уровне.

В каждом языке программирования существует своя концепция типов данных, своя система типов. Однако в любой язык входит минимально-необходимый набор основных типов данных, к которому относятся следующие: целый, вещественный, логический и символьный. С типом величины связаны три ее свойства: множество допустимых значений, множество допустимых операций, форма внутреннего представления (табл. 11.1).

Таблица 11.1

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.