Подходы к раскрытию темы в учебной литературе
Понятие «алгоритм» является центральным в первом школьном учебнике информатики [15]. В учебнике приводится следующее определение: «Под алгоритмом понимают понятное и точное предписание (указание) исполнителю совершить последовательность действий, направленных на достижение указанной цели или на решение поставленной задачи». Указание на выполнение каждого отдельного действия названо командой, а «совокупность команд, которые могут быть выполнены исполнителем, называется системой команд исполнителя». В качестве основного свойства алгоритма подчеркивается формальный характер работы исполнителя при его выполнении. Отсюда делается вывод о том, что исполнителем алгоритма может быть автомат (машина, робот). На этой идее основан принцип программного управления работой компьютера, поскольку программа — это и есть алгоритм, представленный на языке, «понятном» компьютеру — на языке программирования.
Сформулированные в учебнике [15] понятия явились дидактической основой для раскрытия темы алгоритмизации во всех последующих учебниках информатики.
Практически весь алгоритмический раздел учебника [15] ориентирован на исполнителя — человека. В задачах вычислительного характера (а их большинство в учебнике) в качестве метода работы исполнителя предлагается заполнение таблицы значений. В программировании такие таблицы принято называть трассировочными таблицами. В учебнике сказано: «При исполнении алгоритма компьютером значения величин хранятся в его памяти. При исполнении алгоритма человеком таблица значений выполняет роль дополнительной памяти для исполнителя».
Ручная трассировка является весьма полезным методическим приемом при обучении алгоритмизации и программированию. Она позволяет человеку ощутить себя формальным исполнителем, проследить процесс выполнения алгоритма, обнаружить ошибки в алгоритме. От этого приема не следует отказываться, независимо от того, имеется ли в распоряжении учеников компьютер или нет.
Одним из основных методических достижений учебника [15] стало введение в школьную информатику учебного алгоритмического языка. Алгоритмический язык А. П. Ершова можно назвать русскоязычным псевдокодом, предназначенным для обучения методике структурного программирования. Хотя в самом учебнике слова «структурное программирование» нигде не употребляются, но, фактически, реализуется именно этот подход.
Идея и технология структурного программирования возникла и интенсивно развивалась в 60 — 70-х гг. XX столетия и связана с именами таких классиков программирования, как Э.В. Дейкстр, X. Д. Миле, Е. Кнут и др. Большой вклад в теорию и практику программирования внес в этот период и академик А. П. Ершов. В частности, им был разработан АЛЬФА-язык программирования (развитая версия структурного языка Алгол-60 с русскоязычной нотацией) и создан транслятор с этого языка (АЛЬФА-транслятор). Учебный алгоритмический язык содержит в себе многие черты АЛЬФА-языка. Для учебных целей на базе алгоритмического языка был создан язык программирования РАПИРА, описанный в учебнике [15]. Однако он не получил распространения. В 1987 г. в МГУ была осуществлена разработка учебной среды программирования на основе алгоритмического языка, получившая название «Е-практикум» (Е-87). Впоследствии она получила развитие и распространение через известный пакет учебного программного обеспечения КуМир (Комплект Учебных Миров).
Наряду с использованием алгоритмического языка для описания алгоритмов в учебнике [15] активно используются блок-схемы. Подчеркивается необходимость стандартного изображения блок-схем, чего также требует методика структурного подхода к программированию.
В своих методических статьях и выступлениях А. П. Ершов выдвигал следующую идею применительно к школьной информатике: различать исполнителей алгоритмов, работающих с величинами и работающих «в обстановке»; а соответствующие алгоритмы для этих исполнителей называть алгоритмами работы с величинами и алгоритмами работы «в обстановке». В алгоритмах второго типа отсутствуют такие элементы, как величины (переменные, константы), команда присваивания, однако используются все типы алгоритмических структур. Идея применения таких исполнителей для обучения в полной мере была реализована в более поздних учебных изданиях.
Исторически первым педагогическим программным средством, предназначенным для обучения детей алгоритмизации, был язык программирования ЛОГО, разработанный в конце 1960-х гг. американским педагогом-психологом С.Пейпертом [16]. В состав ЛОГО входит исполнитель Черепашка, назначение которого — изображение на экране чертежей, рисунков, состоящих из прямолинейных отрезков. Программы управления Черепашкой составляются из команд: вперед(а), назад(а), направо(в), налево(в), поднять хвост, опустить хвост. Имеется в виду, что Черепашка рисует хвостом, и если хвост опущен, то при перемещении проводится линия, а когда хвост поднят, то линия не рисуется. Кроме того, в языке имеются все основные структурные команды. В целом ЛОГО предназначен для обучения структурной методике программирования. От ЛОГО происходит понятие черепашьей графики, используемой также и в некоторых профессиональных системах компьютерной графики.
Главное методическое достоинство исполнителя Черепашки — ясность для ученика решаемых задач, наглядность процесса работы в ходе выполнения программы. Как известно, дидактический принцип наглядности является одним из важнейших в процессе любого обучения.
В учебнике А. Г. Кушниренко [14] были развиты идеи преподавания алгоритмизации, заложенные А. П. Ершовым и С. Пейпер-том. Основным методическим приемом стало использование разнообразных учебных алгоритмических исполнителей. В учебнике введено два таких исполнителя — это Робот и Чертежник. Назначение Робота — перемещение по полю, разделенному на клетки с выставленными в разных местах стенами. По пути своего движения Робот может закрашивать клетки, измерять температуру и уровень радиации. Исполнитель Чертежник — это своеобразный графопостроитель, действующий в системе декартовых координат, связанных с экраном. Назначение Чертежника — изображение чертежей, графиков, рисунков, состоящих из прямолинейных отрезков. Чертежник близок по идее к Черепашке, однако работа Черепашки не связана с системой координат (хотя единица длины для нее существует).
Программирование исполнителя Робот возможно как без использования величин, так и с величинами. В первом случае исполнитель ориентируется только в обстановке на поле, проверяя наличие стены в некотором направлении или выясняя, закрашена ли очередная клетка. Например, для того чтобы закрасить все клетки вдоль стены, расположенной горизонтально ниже Робота, он должен выполнить следующую программу:
нц покаснизу стена
закрасить
вправо
кц
Здесь использован цикл с предусловием — основной тип циклической команды (нц — начало цикла, кц — конец цикла). Рассмотрим еще один пример: Робот движется вдоль горизонтальной стены и закрашивает только пустые (не закрашенные) клетки.
нц покаснизу стена
есликлетка незакрашена
тозакрасить
Все
вправо
кц
Авторы учебника [14] интерпретируют своего исполнителя следующим образом: Робот — это автоматическое устройство, управляемое компьютером. Между компьютером и Роботом имеется прямая и обратная связь. По прямой связи от ЭВМ к Роботу передаются управляющие команды, по обратной связи — ответы Робота на запросы о текущей обстановке. Например, фраза «снизу стена» обозначает запрос компьютера к Роботу на проверку условия: находится ли под ним стена. В результате Робот по обратной связи отвечает «да» или «нет» в зависимости от обстановки. То же самое относится к фразе «клетка не закрашена».
Из рассмотренных примеров следует вывод о том, что лишь при наличии обратной связи алгоритмы управления исполнителем могут иметь сложную структуру, содержащую циклы и ветвления. Без обратной связи алгоритмы могут быть только линейными.
На примере исполнителя Робота вводится понятие вспомогательного алгоритма и метода последовательного уточнения (нисходящего проектирования; программирования сверху вниз). Пример использования Робота в учебнике [14] доказывает, что ограничиваясь исполнителями и алгоритмами, работающими без величин, можно успешно обучать структурной методике программирования.
В язык Робота постепенно включается использование величин со всеми их атрибутами: именем, значением, типом. Все команды Чертежника, кроме «поднять перо», «.опустить перо», используют параметры, которые являются величинами.
Языком описания алгоритмов для всех исполнителей является учебный алгоритмический язык (АЯ). За основу взята версия АЯ, описанная в учебнике А.П.Ершова [15]. Однако введены некоторые модификации в изобразительные средства языка. Введение в учебнике [14] всякой новой конструкции алгоритмического языка происходит по одинаковой методической схеме:
• рассматривается новая задача, требующая введения новой конструкции;
• описывается алгоритм решения этой задачи;
• дается формальное описание данной конструкции в общем виде.
Наряду с алгоритмами для Робота и Чертежника в учебнике [14] рассматриваются алгоритмы вычислительного характера, ориентированные на универсального исполнителя обработки информации — компьютер. Это типовые задачи обработки числовой и символьной информации: вычисление числовых последовательностей, обработка массивов, литерных строк и пр. Рассматриваются также алгоритмы решения содержательных задач методами математического моделирования.
В целом можно сказать, что в учебнике [14] алгоритмическая линия школьной информатики проработана наиболее полно и последовательно как в содержательном, так и в методическом плане.
Алгоритмическая линия в учебнике Л!Г. Гейна [12] реализована по двум направлениям. Первое направление заключается в использовании учебных исполнителей алгоритмов, работающих «в обстановке», подобно тому, как это делается в учебнике [14]. Второе направление заключается в обучении построению вычислительных алгоритмов для решения задач математического моделирования.
В учебнике [12] также применен исполнитель с названием «Чертежник», который относится к категории исполнителей, работающих по принципу «черепашьей графики». В отличие от Чертежника из учебника А. Г. Кушниренко, его команды перемещения (сделать шаг, прыгнуть) и вращения (повернуть налево) не имеют параметров. По одной команде исполнитель перемещается на строго определенное расстояние — один шаг, или поворачивается против часовой стрелки на 90°. Поэтому создаваемые рисунки могут состоять только из горизонтальных и вертикальных отрезков. В этом смысле изобразительные возможности данного исполнителя более скромные, чем у Чертежника А. Г. Кушниренко. Можно сказать, что Чертежник А. Г. Гейна в чистом виде является исполнителем, работающим «в обстановке».
Для моделирования методов решения задач обработки табличной информации в [12] введен исполнитель Робот-манипулятор. Прямоугольная таблица имитируется стеллажом, состоящим из ячеек, в которые могут быть помещены различные радиодетали (микросхемы, транзисторы и пр.). Робот умеет перемещаться в вертикальном и горизонтальном направлениях вдоль ячеек, помещать в них детали или извлекать детали из ячеек. Здесь можно говорить о появлении величин, рассматривая имя детали в ячейке как величину (производится сравнение ее имени с именем искомой детали). Характерная структура алгоритмов управления Роботом — вложенные циклы с ветвлениями.
Второе направление алгоритмической линии в учебнике [12] — алгоритмы решения вычислительных задач. Для построения таких алгоритмов используется учебный исполнитель Вычислитель. Это исполнитель, работающий только с числовыми величинами. Поскольку в качестве языка программирования для реализации вычислительных алгоритмов на ЭВМ используется Бейсик, то и язык Вычислителя «бейсикообразен». Несмотря на неструктурный характер используемой версии Бейсика, авторы стараются оставаться в рамках структурного подхода. В частности, это проявляется в том, что в языке Вычислителя отсутствует команда перехода.
Для моделирования понятия переменной применительно к Вычислителю используется образ ящика. Имя переменной — это буква, записанная на «ящике», а присваиваемое ей значение — это величина (число), помещаемое в «ящик». Составление программы на Бейсике по данному алгоритму интерпретируется как перевод с языка Вычислителя на язык Бейсик. При этом «ящики» для переменных заменяются на ячейки памяти ЭВМ, а при записи программы требуется строго соблюдать правила синтаксиса Бейсика. Для программирования цикла с предусловием в учебнике предлагается использовать стандартный способ его реализации с помощью операторов IF GOTO (для версий Бейсика, в которых нет оператора WHILE).
В учебнике В.А.Каймина и др. [13] не применяется методика учебных исполнителей. Изучение алгоритмизации ориентируется на исполнителя-ЭВМ. Для описания алгоритмов используется алгоритмический язык, близкий к варианту А.П.Ершова. Блок-схемы практически не используются. В учебнике [13] рассматриваются вычислительные задачи, а также задачи на построение графических изображений. Языком реализации алгоритмов на ЭВМ является Бейсик. Как и в учебнике [12], авторы уделяют внимание стандартным приемам программирования на неструктурном Бейсике циклов и ветвлений.
В учебнике третьего поколения А. Г. Гейна и др. [2] существенно изменился подход к обучению алгоритмизации и программированию по сравнению с учебником [12] того же авторского коллектива. Введен новый учебный исполнитель Паркетчик. Для того, чтобы подчеркнуть формальный характер работы исполнителей алгоритмов, авторы используют термин «Бездумные исполнители» — БИ. Таким образом, Паркетчик представляет из себя БИ, назначение которого — выкладывать на клетчатом поле узоры из разноцветных плиток (красных и зеленых). Поле имеет прямоугольную форму; каждая клетка идентифицируется двумя индексными номерами — по горизонтали и по вертикали, например: (1,1), (3,5) и т.п.
Паркетчик может перемещаться с помощью команд «шаг вверх», «шаг вниз», «шаг влево», «шаг вправо» к соседним клеткам, а также к любой клетке поля по команде «перейти на (т, п)». В текущую клетку Паркетчик может положить плитку указанного цвета по команде «положить (цвет)» или убрать плитку по команде «снять плитку». Условиями в командах ветвления и цикла может быть проверка цвета лежащей плитки или проверка наличия препятствия (стены) в любом направлении от текущей клетки.
Паркетчик предназначен для методичного обучения структурному способу построения алгоритмов. Форма языка Паркетчика применяется также и для описания вычислительных алгоритмов, подобно тому, как используется алгоритмический язык в учебнике А.Г.Кушниренко [14]. По сути дела, между алгоритмическим языком и языком Паркетчика нет принципиальной разницы. И тот и другой представляет собой структурный русскоязычной псевдокод. Видимо, считая описание алгоритма на языке Паркетчика достаточно структурированным и наглядным, авторы отказались от использования в учебнике [2] блок-схем.
В учебнике [2] предлагаются для изучения два языка программирования: QBasic и Паскаль. Поскольку QBasic является структурированной версией Бейсика, то нет принципиальной разницы в выборе того или другого языка для начального обучения программированию.
В учебнике А. А. Кузнецова и Н.В.Агапьевой [8] каких-то специальных учебных средств для описания алгоритмов не используется. Значительный по объему раздел «Введение в программирование» ориентирован на начальное изучения Паскаля на примерах задач вычислительного характера, а также задач построения графических изображений и обработки строк.
В учебнике И.Г.Семакина и др. [6] применен отличный от рассмотренных подход к теме алгоритмизации. Его можно назвать кибернетическим подходом. Алгоритм трактуется как информационный компонент системы управления. Такой подход дает возможность ввести в содержание базового курса новую содержательную линию — линию управления. Это многоплановая линия, которая позволяет затронуть следующие вопросы:
• элементы теоретической кибернетики: кибернетическая модель управления с обратной связью;
• элементы прикладной кибернетики: структура компьютерных систем автоматического управления (систем с программным управлением); назначение автоматизированных систем управления;
• основы теории алгоритмов.
Для того чтобы соблюсти принцип инвариантности содержания по отношению к конкретным версиям программного обеспечения, в учебнике [6] описывается гипотетический учебный исполнитель, которому дано имя ГРИС — графический исполнитель. Это исполнитель, работающий «в обстановке» (т.е. без использования величин). Наиболее близкими к нему являются Кенгуренок (пакет учебного ПО фирмы КУДИЦ) и Чертежник (учебник А. Г. Гейна [2]). На примере ГРИС вводятся основные понятия алгоритмизации. Предлагаемая последовательность заданий способствует эффективному достижению основной цели раздела — освоения структурной методики построения алгоритмов.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|